Einführung
Vor etwa 25 Jahren begann, ausgehend von den angloamerikanischen Ländern, die Entwicklung und Etablierung von Triage- bzw. Ersteinschätzungssystemen für die Notaufnahmen, da sich durch die steigende Inanspruchnahme der Notaufnahmen die Notwendigkeit einer Priorisierung der ungeregelt und ungeplant eintreffenden Patienten ergab. Ab 2004 setzten die ersten Notaufnahmen in Deutschland strukturierte Triagesysteme ein. 2010 wurde dem Thema ein Übersichtsartikel im
Deutschen Ärzteblatt gewidmet [
12] und spätestens mit dem G‑BA-Beschluss zur strukturierten Notfallversorgung 2018, der den Einsatz eines strukturierten und validierten Systems zur Behandlungspriorisierung als Voraussetzung zur Teilnahme an der Notfallversorgung fordert [
18], ist von einer flächendeckenden Verbreitung in Deutschland auszugehen.
Im deutschsprachigen Raum sind der Emergency Severity Index (ESI) und das Manchester Triage System (MTS) die verbreitetsten Triagesysteme zur Dringlichkeitseinschätzung der Notfallpatienten.
Die Validität beider Triagesysteme wird als moderat bis gut betrachtet, wobei beim ESI die Einstufung stark auf der klinischen Beurteilung durch die Pflegekraft beruht, was zu einer hohen Inter-rater-Variabilität und suboptimalen Vorhersagekraft führt [
34]. Beim MTS weisen dafür einige Präsentationsdiagramme, wie z. B. „abdomineller Schmerz beim Erwachsenen“, „Unwohlsein des Erwachsenen“, „Thoraxschmerz“ und „Extremitätenprobleme“ niedrige Sensitivitäten auf, die z. T. unter 0,5 liegen [
43]. Dies kann dazu führen, dass je nach angewandtem Triagesystem und in Abhängigkeit von der Erfahrung und der subjektiven Einschätzung des Anwenders ein Patient mit den gleichen Symptomen unterschiedlichen Dringlichkeitsstufen zugeordnet wird. Zudem greifen die etablierten Triagesysteme auf typische Symptome zurück, dabei hat z. B. der typische retrosternale Thoraxschmerz eine geringe Vorhersagekraft für Diagnose oder Prognose. Die mit steigendem Alter häufiger auftretenden atypischen Beschwerden, die mit einer höheren Morbidität und Mortalität assoziiert sind, werden dadurch nicht erfasst [
4]. ESI und MTS sind nicht altersadaptiert und zeigen bei älteren Patienten geringere diagnostische Treffsicherheit und die Tendenz zur Untertriage [
22,
25,
30,
43].
Die bisherigen Triagesysteme bauen auf medizinischem Wissen und Erfahrungen auf [
16], die Eingaben beinhalten subjektive und objektive Informationen. Bisher wurden Triagesysteme vor allem auf prädiktive Validität und Reliabilität untersucht; allerdings sind die Triagekategorien ungenau und überschneiden sich teilweise [
22]. Bingisser empfiehlt daher den Wechsel weg von der auf Expertenmeinung basierten Triage hin zur evidenzbasierten Triage. Er sieht eine Risikostratifizierung hoher Güte bei Eintreffen für das weitgehend unselektierte Patientengut einer Notaufnahme mit erheblichem kurzfristigem Morbiditäts- und Mortalitätsrisiko als elementar wichtig an [
4].
Dies können elektronische Triagesysteme (ETS) leisten, die über die symptombasierte Einschätzung einer Pflegekraft hinausgehen. Sie vergleichen Daten, die standardisiert im Rahmen der Triage erhoben werden, mit hinterlegten Algorithmen, die mit großen Datenmengen trainiert wurden. So können versteckte „Muster“, d. h. Risikokonstellationen, aus den Anamnesedaten erkannt werden [
16] und die Dringlichkeitsstufe aus dem individuellen Risikoprofil des Patienten bestimmt werden. Neben der reinen Risikoeinschätzung bei der Triage erlauben ETS auch eine Vorhersage über klinisch-organisatorische Endpunkte, wie die Notwendigkeit der stationären Aufnahme, einer Intensivpflichtigkeit sowie der Mortalität oder der Verlegung in den Operationssaal bzw. das Herzkatheterlabor [
14]. So kann schon sehr früh die Disposition des Patienten gesteuert und die Aufenthaltsdauer in der Notaufnahme verkürzt werden [
23]. Dabei sollen solche Systeme nicht das medizinische Fachpersonal als Entscheider ersetzen, sondern ihnen relevantes Wissen und Unterstützung bei ihrer Entscheidungsfindung zur Verfügung stellen [
16].
Funktionsprinzip der elektronischen Triage (ETS)
Bereits 2007 taucht dieser Begriff erstmalig in der Fachliteratur auf, zunächst wurde damals, aber auch noch in aktuelleren Publikationen darunter die Bereitstellung der Ersteinschätzungsdiagramme bzw. -formulare in digitaler Form im Emergency-Department-Informations-System (EDIS) oder Klinik-Informations-System (KIS) verstanden [
39]. In anderen Ländern, wie in Korea [
10,
26], den USA [
14,
17,
34], Spanien [
44] oder dem Iran [
33] wird dieser Begriff für spezielle Programme benutzt, die ein algorithmenbasiertes Clinical Decision Support System (CDSS) bilden. Dies entspricht auch der Definition von ETS in diesem Artikel als
computerbasierte Triagesysteme mit Algorithmen, die eine größere Anzahl von Prädiktorvariablen zur Einstufung berücksichtigen als traditionelle pflegebasierte Triagesysteme.
Damit handelt es sich um eine Art des Machine Learning (ML) und eine Anwendungsform der künstlichen Intelligenz (KI) oder Artificial Intelligence (AI) (Tab.
1). Die zugrunde liegenden „intelligenten Systeme“ sind nicht einheitlich. Sie unterscheiden sich hinsichtlich Aussagekraft und Anwendungsgebiet.
Tab. 1
Begriffserläuterung ETS und ML
Verwenden Algorithmen, die in der Lage sind, eine viel größere Anzahl von Prädiktorvariablen (z. B. Alter, Leitsymptom, Blutdruck etc.) zum Zeitpunkt der Triage zu berücksichtigen als etablierte Triagesysteme | Teilbereich der KI, der verschiedene Methoden zur automatischen Erkennung von Mustern in Daten nutzt und diese Muster dann in Vorhersagen oder Entscheidungen umwandelt |
Können zusätzliche Endpunkte zur Risikostratifizierung integrieren, wie z. B. Sterblichkeit oder Einweisung auf eine Intensivstation [ 4] | Modelle beginnen oft zufällig und verbessern sich dann mit der Zeit durch den Trainingsprozess |
Verwendet Klassifikationsverfahren (Tab. 2; [ 40]) |
Ergebnisse der ETS
Natürlich ist die Einführung eines ETS nur sinnvoll, wenn das ETS die Zuverlässigkeit der Triageeinstufungen des medizinischen Fachpersonals übertrifft.
Die Leistungsfähigkeit der Triagesysteme und Modelle wird in Form von Genauigkeitsmetriken beschrieben. Dazu gehören Diskriminierung (C-Statistik) und Klassifikationsstatistiken (Sensitivität, Spezifität, Genauigkeit, positiver prädiktiver Wert [PPV], negativer prädiktiver Wert [NPV] sowie Likelihood Ratios [+/-]). Einige Studien verwenden Synonyme wie „Präzision“ statt PPV oder „Recall“ statt Sensitivität [
31]. In den meisten Studien werden die Ergebnisse mittels C‑Statistik (AUC/AUROC) dargestellt [
13]. Werte oberhalb von 0,7 werden hierbei als gut betrachtet, über 0,8 als exzellent und größer 0,9 als herausragend [
20,
31].
Es konnte sowohl im Vergleich ESI/MTS gegen ETS für die Punkte stationäre Aufnahme, Intensivpflichtigkeit, Mortalität und Notfallprozeduren [
3,
17,
27,
34] als auch im Vergleich verschiedener ML-Modelle gegen Standardtriage eine höhere Leistungsfähigkeit der ETS gezeigt werden.
Dazu im Folgenden einige exemplarische Daten aus den Studien:
-
Für den Parameter „Intensivpflichtigkeit“ bei den Triagestufen 1–3 lag das ESI-Referenzmodell bei 0,79 [
17] bzw. 0,74 (95 %-CI 0,72–0,75; [
34]) gegenüber einem DNN-basierten Modell mit 0,86 (95 %-CI 0,85–0,87) bzw. 0,92 mit gleichzeitig höherer Sensitivität und Spezifität. Die Präzision eines MTS-basierten Modells lag bei 0,74 und konnte unter Hinzunahme von klinischen Variablen wie Alter und Vitalwerten auf 0,84 bzw. mit Einbeziehung der Hauptbeschwerde auf 0,86 gesteigert werden [
17].
-
Für den Punkt „Krankenhausaufnahme“ ergab der Vergleich verschiedener Klassifikationsverfahren bei mit Triageinformationen trainierten Modellen eine Test-AUC von 0,87 für LR (95 %-CI 0,86 – 0,87), 0,87 für XGBoost (95 %-CI 0,87 – 0,88) und 0,87 für DNN (95 %-CI 0,87 – 0,88), bei mit Patientenhistorie trainierten Modellen eine AUC von 0,86 für LR (95 %-CI 0,86 – 0,87), 0,87 für XGBoost (95 %-CI 0,87 – 0,87) und 0,87 für DNN (95 %-CI 0,87 – 0,88) und für Modelle, die auf dem vollständigen Satz von Variablen (Triage plus Anamnese) trainiert wurden, eine AUC von 0,91 für LR (95 %-CI 0,91 – 0,91), 0,92 für XGBoost (95 %-CI 0,92 – 0,93) und 0,92 für DNN (95 %-CI 0,92 – 0,92; [
23]).
Interessanterweise war die Präzision eines ETS, das nur klinischen Variablen und die Hauptbeschwerden berücksichtigte, ohne Einbeziehung der MTS- oder ESI-Triage-Informationen gleichwertig der Kombination aus allen drei Teilen, bei gleicher Spezifität und Sensitivität [
17]. Auch in einer weiteren Studie verbesserte das Hinzufügen von Anamneseinformationen die Vorhersagekraft signifikant im Vergleich zur alleinigen Verwendung von Triageinformationen – bei alleiniger Verwendung der Patientenhistorie wurde bereits eine AUC von 0,86 erreicht [
23]. Diese Ergebnisse zeigen eine hohe Präzision der Triagevorhersagen der CDSS und auch, dass die subjektive Einschätzung und Erfahrung des Triagierenden darin keine Rolle mehr spielen. Dies führte dazu, dass manche Untersucher in ihren endgültigen Modellen bereits auf die Triageinformationen verzichten [
17].
Diskussion – Chancen und Herausforderungen der„e‑Triage“
Ein ETS kann nur genutzt werden, wo ein EDIS mit computergestützter Triage und elektronischer Krankenakte etabliert ist [
14]. Davon ist in Deutschland aber inzwischen überwiegend auszugehen.
Die Implementierung und Anwendung eines CDSS darf nicht zur Verlängerung der Triagezeit führen. Das bedeutet, dass neben den Daten, die bei der Aufnahme in der Notaufnahme im Computer erfasst werden, die ML-Modelle sich nur auf Variablen stützen sollten, die innerhalb von drei Minuten erfasst werden können (z. B. Vitalparameter und Hauptbeschwerden; [
16]). Auch Daten aus der elektronischen Patientenakte oder der elektronischen Gesundheitskarte müssen daher rasch zur Verfügung stehen.
Die Einstufung mittels ETS soll Über- und Untertriage reduzieren. Die Untertriage birgt das Risiko einer Verschlechterung während der Wartezeit. Die Übertriage verbraucht knappe Ressourcen und schränkt die Verfügbarkeit freier Betten in der Notaufnahme für andere Patienten ein, die möglicherweise eine sofortige Behandlung benötigen [
15]. Jordi hat 2015 gezeigt, dass eine korrekte Triagestufe bei ESI nur in 60 % gewählt wurde, 13,6 % waren über- und 26,8 % untertriagiert [
24], ähnliche Ergebnisse finden sich bei Levin, hier legte das ETS bei 10 % der ESI-3-Patienten eine Höherstufung fest [
27]. Untertriage ist eine gefährliche Situation bei Crowding und eine Quelle für Bias, da je nach initialer Triageklassifizierung angenommen wird, dass der Patient nicht relevant erkrankt ist [
8].
Allerdings wird in verschiedenen Arbeiten übergreifend betont, dass ein ETS nicht die Triagekraft oder den Arzt ersetzen soll [
14,
25,
27]. Diese können den Zustand des vor ihnen sitzenden Patienten oder Details der Anamnese beurteilen, die ein schnelles Handeln erfordern und ein ETS nicht erkennt. Daher muss das ETS vom Fachpersonal „überstimmt“ werden können [
8]. Deshalb müssen auch eine Personifizierung der Algorithmen und die Annahme echter Intelligenz vermieden werden, genauso wie zu glauben, dass diese Systeme wirklich die Aufgabe verstehen, die sie durchführen [
11].
Gerade bei DNN als Klassifikationsverfahren sind die Algorithmen bisher häufig nicht nachvollziehbar, diese „Undurchsichtigkeit“ und fehlende Datentransparenz kann ethische und juristische Auswirkungen haben. Dies ist auch eines der Schlüsselprobleme bzgl. der Einführung von KI [
16,
40]. Mittlerweile rückt das Thema „AI interpretability“ jedoch immer weiter in den Fokus. So ist es bspw. möglich anhand der Gewichtungen eines DNN oder der Koeffizienten eines Regressionsmodells herauszufinden, welche Eigenschaften die Kategorisierung beeinflussen, und diese auf Plausibilität zu überprüfen [
38]. Denn nur Transparenz der AI schafft langfristige Akzeptanz bei den Anwendern.
Wie aus den oben gezeigten Daten ersichtlich, erreicht ein Vorhersagemodell für die Aufnahme, das auf der Vorgeschichte des Patienten aufbaut, eine hohe Präzision. Ein solches Modell enthält Funktionen, die aus Freitextdaten der elektronischen Krankenakte (Electronic Health Record [EHR]) abgeleitet werden können. Insbesondere die Analyse von Texten und medizinischen Notizen mittels NLP kann Informationen liefern, die in tabellarischen Daten fehlen. Dies haben Untersuchungen zu Vorhersagemodellen für Sepsis und Suizide gezeigt [
23,
40]. Die Einbeziehung von Freitexteingaben führt zu signifikanten Verbesserungen sowohl der Sensitivität als auch der Spezifität neuronaler Netzwerkmodelle. Sie haben eine höhere Aussagekraft als codierte Beschwerden. Ein Beispiel dafür wäre, wenn die Triagekraft bei Hauptbeschwerde nur zwischen „Brustschmerzen“ und „Rückenschmerzen“ wählen kann, was nicht die Information erfasst, die „plötzlicher Brustschmerz mit Ausstrahlung in den Rücken“ bedeuten kann [
25].
Bislang ist mit „elektronischer Gesundheitsakte“ nur die Krankengeschichte des Patienten im EDIS/KIS gemeint – eine Limitation, die durch eine elektronische Patientenakte (ePA), die sämtliche ambulanten wie stationären Behandlungen sowie ein Notfalldatenmanagement enthält, wie sie in Deutschland nun sukzessiv eingeführt wird [
21], überwunden werden kann. Natürlich ist die Vollständigkeit der Informationen eine wesentliche Bedingung für deren Verwertbarkeit.
Hier bietet die aktuelle Situation in Deutschland durch verschiedene Aspekte eine günstige Gelegenheit, solche Programme auf verschiedene verlässliche Datenquellen und eine Vielzahl von Kliniken auszudehnen, ggf. sogar als Startschuss einer nationalen ETS-Initiative.
Zum einen wird politisch durch den Digitalisierungsfonds für die Krankenhäuser die Implementierung klinischer Entscheidungssysteme gefördert [
7]. Des Weiteren bietet die bereits oben erwähnte flächendeckende Einführung der ePA in Deutschland einen vielversprechenden Ansatz. Zusätzlich könnten Abrechnungsdaten der Krankenkassen einfließen, die über die Krankenhausverweildauer und Krankenhausmortalität Auskunft geben können.
Weitere interessante Elemente sind sowohl das OPTINOFA-Projekt [
5], welches bereits jetzt, wenn auch unter der Zielsetzung der Zuordnung zur sektoralen Versorgung, über Strukturen verfügt, die für ein flächendeckendes ETS interessant sind, als auch die Daten des AKTIN-Notaufnahmeregisters ([
6]; Tab.
4).
Tab. 4
Digitale Projekte in der Notfallmedizin in Deutschland
OPTINOFA Optimierung der Notfallversorgung durch strukturierte Ersteinschätzung mittels intelligenter Assistenzdienste | Assistenzdienst für die häufigsten notfallmedizinischen Leitsymptome und -diagnosen, stellt Notfallalgorithmen zur Verfügung, die über ein mobiles Endgerät oder direkt in der Klinik vor Ort abgerufen werden können |
Ziel ist eine bessere und bedarfsgerechte Verteilung der Patientenströme |
Teilnehmer: Uniklinik Göttingen und Magdeburg, Krankenkassen sowie Kliniken, kassenärztl. Vereinigungen und andere Partner |
AKTIN Aktionsbündnis für Informations- und Kommunikationstechnologie in Intensiv- und Notfallmedizin | Notaufnahmeregister zur elektronischen Behandlungsdokumentation |
Daten können aufgrund datenschutzkonformer Infrastruktur ohne zusätzlichen Dokumentationsaufwand interoperabel einer sekundären Datennutzung zugeführt werden |
Aktuell Teilnahme von 15 Kliniken aller Stufen der Notfallversorgung |
Daraus könnte ein ETS erstellt und validiert werden. Ein nationales ETS muss auf der Vielzahl der auf dem Markt befindlichen Klinik-Informations-Systeme (KIS) installierbar sein und mit diesen kommunizieren können. Dies stellt eine erhebliche Herausforderung bei dem sehr divergenten Stand der Digitalisierung der deutschen Krankenhäuser dar. Das AKTIN-Projekt zeigt, dass es grundsätzlich machbar ist, und mit fortschreitender Telematik-Infrastruktur einfacher wird [
6].
Auch in Hinsicht auf die von der Politik gewünschten und andiskutierten integrierten Notfallzentren zur Steuerung von Akut- und Notfallpatienten wäre eine Unterstützung durch elektronische Triagesysteme auf der Basis belastbarer Daten zur Erhöhung der Patientensicherheit erstrebenswert. Dieser Ansatz ist besonders interessant, da sich bisherige Systeme als unzureichend zur Dringlichkeitseinstufung dieser Patientengruppe gezeigt haben [
32]. Hierzu ist natürlich die Entwicklung und Implementierung einer datenschutzkonformen Infrastruktur zur Dokumentation in den Notaufnahmen erforderlich, damit eine interoperable, vom verwendeten IT-System unabhängige, sekundäre Datennutzung möglich ist [
1].
Limitationen
Der Stand der digitalen Datenerfassung und die Rechenkraft der Computer in den Kliniken und Notaufnahmen ermöglichen die rasche Datenauswertung durch Prädiktionsmodelle und lassen ihren Einsatz verführerisch einfach aussehen [
40]. Bei näherer Betrachtung vieler Studien fehlt aber eine Validierung [
16] und insbesondere eine objektive Referenzgröße (Goldstandard), die den Vergleich und die Übertragbarkeit der Modellgenauigkeit bei Einsatz an anderer Stelle erlaubt [
31].
Sowohl bei der Wahl der Triagestufe als auch des Endpunkts „Aufnahme auf die Intensivstation“ ist von starken subjektiven und lokalen Einflüssen auszugehen. Hier erscheinen objektiv messbare, nicht beeinflussbare Bezugsvariablen wie Mortalität oder Auftreten eines Herzstillstands in den ersten 72 h nach Aufnahme günstiger [
31].
In den vorgelegten Studien wurde zwar zum Teil auf nationale Datenbanken zurückgegriffen (National Hospital and Ambulatory Medical Care Survey ED Data; [
14,
34]), die meisten vorgestellten ETS sind aber lokale Lösungen, die mit lokalen Daten und Abfragealgorithmen programmiert wurden [
16,
33].
Ebenso beziehen sich viele Studien auf eine retrospektive Datenanalyse, vor der Einbindung in den klinischen Alltag sind prospektive Studien zur Validierung sowie randomisierte Control-Studien erforderlich [
40].
Es bleibt abzuwarten, ob elektronische Triagesysteme durch ihre gute Prädiktion auch ohne die Informationen der klassischen Triage zu einem Paradigmenwechsel führen und Triagesysteme wie ESI und MTS zukünftig ablösen.
Open Access Dieser Artikel wird unter der Creative Commons Namensnennung 4.0 International Lizenz veröffentlicht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en) und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden.
Die in diesem Artikel enthaltenen Bilder und sonstiges Drittmaterial unterliegen ebenfalls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungslegende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materials die Einwilligung des jeweiligen Rechteinhabers einzuholen.