Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Zeitschrift für Gerontologie und Geriatrie 7/2013

01.10.2013 | Beiträge zum Themenschwerpunkt

Regulating aging in adult stem cells with microRNA

verfasst von: M. Hodzic, Y. Naaldijk, A. Stolzing

Erschienen in: Zeitschrift für Gerontologie und Geriatrie | Ausgabe 7/2013

Einloggen, um Zugang zu erhalten

Abstract

Aging can be defined as the result of accumulated cellular damage and deregulation of the epigenome. These changes cause impaired cell maintenance systems, reduced tissue regeneration, weakening of the immune system and increased risk of malignancy. The higher mortality rate in older individuals is a result of these pathologies. The study of age-related changes in adult stem cells and their regenerative potential is crucial to our understanding of the physical deterioration of organs and tissues. The growing interest and knowledge in the field of microRNAs adds a further dimension to this field of research. MicroRNAs are important posttranscriptional regulators of gene expression. They co-regulate stem cell properties such as potency, differentiation, self-renewal and senescence. Various cell systems, e.g. defense mechanisms against reactive oxygen radicals (ROS), DNA repair and apoptosis are regulated by microRNAs. These properties and the assumption that microRNAs act as some kind of general switch make them highly relevant in aging research.
Literatur
1.
Zurück zum Zitat Schanen BC, Li X (2011) Transcriptional regulation of mammalian miRNA genes. Genomics 97(1):1–6 PubMedCrossRef Schanen BC, Li X (2011) Transcriptional regulation of mammalian miRNA genes. Genomics 97(1):1–6 PubMedCrossRef
2.
Zurück zum Zitat Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13(12):1097–1101 PubMedCrossRef Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13(12):1097–1101 PubMedCrossRef
3.
Zurück zum Zitat Olsen PH, Ambros V (1999) The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 216(2):671–680 PubMedCrossRef Olsen PH, Ambros V (1999) The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 216(2):671–680 PubMedCrossRef
4.
Zurück zum Zitat Wu E, Thivierge C, Flamand M et al (2010) Pervasive and cooperative deadenylation of 3’UTRs by embryonic microRNA families. Mol Cell 40(4):558–570 PubMedCrossRef Wu E, Thivierge C, Flamand M et al (2010) Pervasive and cooperative deadenylation of 3’UTRs by embryonic microRNA families. Mol Cell 40(4):558–570 PubMedCrossRef
5.
Zurück zum Zitat Silva Meirelles L da, Chagastelles PC et al (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119(Pt 11):2204–2213 CrossRef Silva Meirelles L da, Chagastelles PC et al (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119(Pt 11):2204–2213 CrossRef
6.
Zurück zum Zitat Zhang X, Hirai M et al (2011) Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue. J Cell Biochem 112:1206–1218 PubMedCrossRef Zhang X, Hirai M et al (2011) Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue. J Cell Biochem 112:1206–1218 PubMedCrossRef
7.
Zurück zum Zitat Bagga S, Bracht J, Hunter S et al (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122(4):553–563 PubMedCrossRef Bagga S, Bracht J, Hunter S et al (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122(4):553–563 PubMedCrossRef
8.
Zurück zum Zitat Wagner W, Ho AD, Zenke M (2010) Different facets of aging in human mesenchymal stem cells. Tissue Eng Part B Rev 16(4):445–453 PubMedCrossRef Wagner W, Ho AD, Zenke M (2010) Different facets of aging in human mesenchymal stem cells. Tissue Eng Part B Rev 16(4):445–453 PubMedCrossRef
9.
Zurück zum Zitat Wagner W, Horn P, Castoldi M et al (2008) Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 3(5):e2213 PubMedCrossRef Wagner W, Horn P, Castoldi M et al (2008) Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 3(5):e2213 PubMedCrossRef
10.
Zurück zum Zitat Bork S, Horn P, Castoldi M et al (2010) Adipogenic differentiation of human mesenchymal stromal cells is down-regulated by microRNA-369-5p and up-regulated by microRNA-371. J Cell Physiol Bork S, Horn P, Castoldi M et al (2010) Adipogenic differentiation of human mesenchymal stromal cells is down-regulated by microRNA-369-5p and up-regulated by microRNA-371. J Cell Physiol
11.
Zurück zum Zitat Lee S, Jung JW, Park SB et al (2011) Histone deacetylase regulates high mobility group A2-targeting microRNAs in human cord blood-derived multipotent stem cell aging. Cell Mol Life Sci 68(2):325–336 PubMedCrossRef Lee S, Jung JW, Park SB et al (2011) Histone deacetylase regulates high mobility group A2-targeting microRNAs in human cord blood-derived multipotent stem cell aging. Cell Mol Life Sci 68(2):325–336 PubMedCrossRef
12.
Zurück zum Zitat Chhabra R, Adlakha YK, Hariharan M et al (2009) Upregulation of miR-23a-27a-24-2 cluster induces caspase-dependent and -independent apoptosis in human embryonic kidney cells. PLoS One 4(6):e5848 PubMedCrossRef Chhabra R, Adlakha YK, Hariharan M et al (2009) Upregulation of miR-23a-27a-24-2 cluster induces caspase-dependent and -independent apoptosis in human embryonic kidney cells. PLoS One 4(6):e5848 PubMedCrossRef
13.
Zurück zum Zitat Fernandez-Marcos PJ, Auwerx J (2011) Regulation of PGC-1{alpha}, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 93:884S–890S PubMedCrossRef Fernandez-Marcos PJ, Auwerx J (2011) Regulation of PGC-1{alpha}, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 93:884S–890S PubMedCrossRef
14.
Zurück zum Zitat Corton JC, Brown-Borg HM (2005) Peroxisome proliferator-activated receptor gamma coactivator 1 in caloric restriction and other models of longevity. J Gerontol A Biol Sci Med Sci 60(12):1494–1509 PubMedCrossRef Corton JC, Brown-Borg HM (2005) Peroxisome proliferator-activated receptor gamma coactivator 1 in caloric restriction and other models of longevity. J Gerontol A Biol Sci Med Sci 60(12):1494–1509 PubMedCrossRef
15.
Zurück zum Zitat Nisoli E, Tonello C, Cardile A et al (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310(5746):314–317 PubMedCrossRef Nisoli E, Tonello C, Cardile A et al (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310(5746):314–317 PubMedCrossRef
16.
Zurück zum Zitat Kong X, Wang R, Xue Y et al (2010) Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One 5(7):e11707 PubMedCrossRef Kong X, Wang R, Xue Y et al (2010) Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One 5(7):e11707 PubMedCrossRef
17.
Zurück zum Zitat Bellizzi D, Rose G, Cavalcante P et al (2005) A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics 85(2):258–263 PubMedCrossRef Bellizzi D, Rose G, Cavalcante P et al (2005) A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics 85(2):258–263 PubMedCrossRef
18.
Zurück zum Zitat Hackl M, Brunner S (2010) mir-17, mir-19b, mir-20a, and mir-106 are down-regulated in human aging. Aging Cell 9(2):291–296 PubMedCrossRef Hackl M, Brunner S (2010) mir-17, mir-19b, mir-20a, and mir-106 are down-regulated in human aging. Aging Cell 9(2):291–296 PubMedCrossRef
19.
Zurück zum Zitat Grillari J, Hackl M, Grillari-Voglauer R (2010) miR-17-92 cluster: ups and downs in cancer and aging. Biogerontology 11(4):501–506 PubMedCrossRef Grillari J, Hackl M, Grillari-Voglauer R (2010) miR-17-92 cluster: ups and downs in cancer and aging. Biogerontology 11(4):501–506 PubMedCrossRef
20.
Zurück zum Zitat Olive V, Bennett MJ (2009) mir-19 is a key oncogenic component of mir-17-92. Genes Dev 23(24):2839–2849 PubMedCrossRef Olive V, Bennett MJ (2009) mir-19 is a key oncogenic component of mir-17-92. Genes Dev 23(24):2839–2849 PubMedCrossRef
21.
Zurück zum Zitat Morgensztern D, McLeod HL (2005) PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs 16(8):797–803 PubMedCrossRef Morgensztern D, McLeod HL (2005) PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs 16(8):797–803 PubMedCrossRef
22.
Zurück zum Zitat Nishino J, Kim I, Chada K, Morrison SJ (2008) Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf expression. Cell 135(2):227–239 PubMedCrossRef Nishino J, Kim I, Chada K, Morrison SJ (2008) Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf expression. Cell 135(2):227–239 PubMedCrossRef
23.
Zurück zum Zitat Passegue E, Wagner EF, Weissman IL (2004) JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell 119(3):431–443 PubMedCrossRef Passegue E, Wagner EF, Weissman IL (2004) JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell 119(3):431–443 PubMedCrossRef
24.
Zurück zum Zitat Valadi H, Ekstrom K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659 PubMedCrossRef Valadi H, Ekstrom K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659 PubMedCrossRef
25.
Zurück zum Zitat Wang K, Zhang S, Weber J et al (2010) Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 38(20):7248–7259 PubMedCrossRef Wang K, Zhang S, Weber J et al (2010) Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 38(20):7248–7259 PubMedCrossRef
26.
Zurück zum Zitat Collino F, Deregibus MC, Bruno S et al (2010) Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One 5(7):e11803 PubMedCrossRef Collino F, Deregibus MC, Bruno S et al (2010) Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One 5(7):e11803 PubMedCrossRef
27.
Zurück zum Zitat Chen TS, Lai RC, Lee MM et al (2010) Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res 38(1):215–224 PubMedCrossRef Chen TS, Lai RC, Lee MM et al (2010) Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res 38(1):215–224 PubMedCrossRef
28.
Zurück zum Zitat Burdzinska A, Gala K, Paczek L (2008) Myogenic stem cells. Folia Histochem Cytobiol 46(4):401–412 PubMed Burdzinska A, Gala K, Paczek L (2008) Myogenic stem cells. Folia Histochem Cytobiol 46(4):401–412 PubMed
29.
Zurück zum Zitat Drummond MJ, McCarthy JJ, Sinha M et al (2010) Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis. Physiol Genomics Drummond MJ, McCarthy JJ, Sinha M et al (2010) Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis. Physiol Genomics
30.
Zurück zum Zitat Minamino T, Komuro I (2007) Vascular cell senescence: contribution to atherosclerosis. Circ Res 100(1):15–26 PubMedCrossRef Minamino T, Komuro I (2007) Vascular cell senescence: contribution to atherosclerosis. Circ Res 100(1):15–26 PubMedCrossRef
32.
Zurück zum Zitat Kirton JP, Xu Q (2010) Endothelial precursors in vascular repair. Microvasc Res 79(3):193–199 PubMedCrossRef Kirton JP, Xu Q (2010) Endothelial precursors in vascular repair. Microvasc Res 79(3):193–199 PubMedCrossRef
33.
Zurück zum Zitat Heiss C, Keymel S (2005) Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol 45(9):1441–1448 PubMedCrossRef Heiss C, Keymel S (2005) Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol 45(9):1441–1448 PubMedCrossRef
34.
Zurück zum Zitat Potente M, Ghaeni L (2007) SIRT1 controls endothelial angiogenesis functions during vascular growth. Genes Dev 21(20):2644–2658 PubMedCrossRef Potente M, Ghaeni L (2007) SIRT1 controls endothelial angiogenesis functions during vascular growth. Genes Dev 21(20):2644–2658 PubMedCrossRef
35.
Zurück zum Zitat Zhao T, Li N (2010) MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent formation regulator 1. Am J Physiol Endocrinol Metab 229(1):E110–E116 CrossRef Zhao T, Li N (2010) MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent formation regulator 1. Am J Physiol Endocrinol Metab 229(1):E110–E116 CrossRef
36.
Zurück zum Zitat Bommer GT, Gerin I (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17(15):1298–1307 PubMedCrossRef Bommer GT, Gerin I (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17(15):1298–1307 PubMedCrossRef
37.
Zurück zum Zitat Tivnan A, Tracey L, Buckley PG et al (2011) MicroRNA-34a is a potent tumor suppressor molecule in vivo in neuroblastoma. BMC Cancer 11:33 PubMedCrossRef Tivnan A, Tracey L, Buckley PG et al (2011) MicroRNA-34a is a potent tumor suppressor molecule in vivo in neuroblastoma. BMC Cancer 11:33 PubMedCrossRef
38.
Zurück zum Zitat Vaziri H, Dessain SK (2001) hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107(2):149–159 PubMedCrossRef Vaziri H, Dessain SK (2001) hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107(2):149–159 PubMedCrossRef
39.
Zurück zum Zitat Smith J (2002) Human Sir2 and the ‘silencing’ of p53 activity. Trends Cell Biol 12(9):404–406 PubMedCrossRef Smith J (2002) Human Sir2 and the ‘silencing’ of p53 activity. Trends Cell Biol 12(9):404–406 PubMedCrossRef
40.
Zurück zum Zitat Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17(2):193–199 PubMedCrossRef Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17(2):193–199 PubMedCrossRef
41.
Zurück zum Zitat Menghini R, Casagrande V, Cardellini M et al (2009) MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 120(15):1524–1532 PubMedCrossRef Menghini R, Casagrande V, Cardellini M et al (2009) MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 120(15):1524–1532 PubMedCrossRef
42.
Zurück zum Zitat Yu JM, Wu X et al (2011) Age-related changes in mesenchymal stem cells derived from rhesus macaque bone marrow. Aging Cell 10(1):66–79 PubMedCrossRef Yu JM, Wu X et al (2011) Age-related changes in mesenchymal stem cells derived from rhesus macaque bone marrow. Aging Cell 10(1):66–79 PubMedCrossRef
Metadaten
Titel
Regulating aging in adult stem cells with microRNA
verfasst von
M. Hodzic
Y. Naaldijk
A. Stolzing
Publikationsdatum
01.10.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Zeitschrift für Gerontologie und Geriatrie / Ausgabe 7/2013
Print ISSN: 0948-6704
Elektronische ISSN: 1435-1269
DOI
https://doi.org/10.1007/s00391-013-0531-7