Skip to main content

2021 | OriginalPaper | Buchkapitel

8. Strukturelle und Funktionelle Elektrostimulation bei Schädigung des unteren motorischen Neurons

verfasst von : Ines Bersch-Porada

Erschienen in: Funktionelle Elektrostimulation in der Neurorehabilitation

Verlag: Springer Berlin Heidelberg

Zusammenfassung

Dieses Kapitel ist als Leitfaden für Therapeuten und Kliniker gedacht. Es informiert über physiologische Grundlagen sowie Evidenzen in der Behandlung und bietet Beispiele für die Behandlung mit Elektrostimulation bei einer Schädigung des unteren Motoneurons. Es gibt viele publizierte Studien, die den Effekt der Stimulation denervierter Muskulatur unterschiedlicher Genese aufzeigen. Dennoch sind Kliniker gezwungen, eine Vielzahl von Arbeiten zu lesen, um ihre Behandlung zu optimieren, da klinisch relevante Informationen selten in einer einzigen Arbeit komprimiert enthalten sind. Die Studien geben wertvolle Übersichten über die Anwendung von Elektrostimulation, berücksichtigen aber oft nicht ausreichend die Aspekte der praktischen Behandlung, auf die Therapeuten angewiesen sind.
In diesem Kapitel werden Beispiele gegeben, wie die Stimulation denervierter Muskulatur in die klinische Praxis implementiert werden kann, um die Behandlung zu unterstützen und zu optimieren. Die Stimulationsprotokolle und -parameter basieren auf wissenschaftlichen Studien und werden durch klinische Evidenz gestützt.
Literatur
Zurück zum Zitat Albertin G, Hofer C, Zampieri S et al. (2018) In complete SCI patients, long-term functional electrical stimulation of permanent denervated muscles increases epidermis thickness. Neurol Res 40:277–282CrossRef Albertin G, Hofer C, Zampieri S et al. (2018) In complete SCI patients, long-term functional electrical stimulation of permanent denervated muscles increases epidermis thickness. Neurol Res 40:277–282CrossRef
Zurück zum Zitat Asensio-Pinilla E, Udina E, Jaramillo J, Navarro X (2009) Electrical stimulation combined with exercise increase axonal regeneration after peripheral nerve injury. Exp Neurol 219:258–265CrossRef Asensio-Pinilla E, Udina E, Jaramillo J, Navarro X (2009) Electrical stimulation combined with exercise increase axonal regeneration after peripheral nerve injury. Exp Neurol 219:258–265CrossRef
Zurück zum Zitat Ashley Z, Salmons S, Boncompagni S et al. (2007) Effects of chronic electrical stimulation on long-term denervated muscles of the rabbit hind limb. J Muscle Res Cell Motil 28:203–217CrossRef Ashley Z, Salmons S, Boncompagni S et al. (2007) Effects of chronic electrical stimulation on long-term denervated muscles of the rabbit hind limb. J Muscle Res Cell Motil 28:203–217CrossRef
Zurück zum Zitat Boncompagni S, Kern H, Rossini K et al. (2007) Structural differentiation of skeletal muscle fibers in the absence of innervation in humans. Proc Natl Acad Sci U S A 104:19.339–19.344CrossRef Boncompagni S, Kern H, Rossini K et al. (2007) Structural differentiation of skeletal muscle fibers in the absence of innervation in humans. Proc Natl Acad Sci U S A 104:19.339–19.344CrossRef
Zurück zum Zitat Brushart TM, Jari R, Verge V et al. (2005) Electrical stimulation restores the specificity of sensory axon regeneration. Exp Neurol 194:221–229CrossRef Brushart TM, Jari R, Verge V et al. (2005) Electrical stimulation restores the specificity of sensory axon regeneration. Exp Neurol 194:221–229CrossRef
Zurück zum Zitat Bryden AM, Kilgore KL, Lind BB, Yu DT (2004) Triceps denervation as a predictor of elbow flexion contractures in C5 and C6 tetraplegia. Arch Phys Med Rehabil 85:1880–1885CrossRef Bryden AM, Kilgore KL, Lind BB, Yu DT (2004) Triceps denervation as a predictor of elbow flexion contractures in C5 and C6 tetraplegia. Arch Phys Med Rehabil 85:1880–1885CrossRef
Zurück zum Zitat Burke D, Gandevia SC, Macefield G (1988) Responses to passive movement of receptors in joint, skin and muscle of the human hand. J Physiol Lond 402:347–361CrossRef Burke D, Gandevia SC, Macefield G (1988) Responses to passive movement of receptors in joint, skin and muscle of the human hand. J Physiol Lond 402:347–361CrossRef
Zurück zum Zitat Carraro U, Rossini K, Mayr W, Kern H (2005) Muscle fiber regeneration in human permanent lower motoneuron denervation: relevance to safety and effectiveness of FES-training, which induces muscle recovery in SCI subjects. Artif Organs 29:187–191CrossRef Carraro U, Rossini K, Mayr W, Kern H (2005) Muscle fiber regeneration in human permanent lower motoneuron denervation: relevance to safety and effectiveness of FES-training, which induces muscle recovery in SCI subjects. Artif Organs 29:187–191CrossRef
Zurück zum Zitat Carraro U, Kern H, Gava P et al. (2017) Recovery from muscle weakness by exercise and FES: lessons from Masters, active or sedentary seniors and SCI patients. Aging Clin Exp Res 29:579–590CrossRef Carraro U, Kern H, Gava P et al. (2017) Recovery from muscle weakness by exercise and FES: lessons from Masters, active or sedentary seniors and SCI patients. Aging Clin Exp Res 29:579–590CrossRef
Zurück zum Zitat Fox IK, Miller AK, Curtin CM (2018) Nerve and tendon transfer surgery in cervical spinal cord injury: individualized choices to optimize function. Top Spinal Cord Inj Rehabil 24:275–287CrossRef Fox IK, Miller AK, Curtin CM (2018) Nerve and tendon transfer surgery in cervical spinal cord injury: individualized choices to optimize function. Top Spinal Cord Inj Rehabil 24:275–287CrossRef
Zurück zum Zitat Gargiulo P, Reynisson PJ, Helgason B et al. (2011) Muscle, tendons, and bone: structural changes during denervation and FES treatment. Neurol Res 33:750–758CrossRef Gargiulo P, Reynisson PJ, Helgason B et al. (2011) Muscle, tendons, and bone: structural changes during denervation and FES treatment. Neurol Res 33:750–758CrossRef
Zurück zum Zitat Gordon T, English AW (2016) Strategies to promote peripheral nerve regeneration: electrical stimulation and/or exercise. Eur J Neurosci 43:336–350CrossRef Gordon T, English AW (2016) Strategies to promote peripheral nerve regeneration: electrical stimulation and/or exercise. Eur J Neurosci 43:336–350CrossRef
Zurück zum Zitat Gordon T, Amirjani N, Edwards DC, Chan KM (2010) Brief post-surgical electrical stimulation accelerates axon regeneration and muscle re innervation without affecting the functional measures in carpal tunnel syndrome patients. Exp Neurol 223:192–202CrossRef Gordon T, Amirjani N, Edwards DC, Chan KM (2010) Brief post-surgical electrical stimulation accelerates axon regeneration and muscle re innervation without affecting the functional measures in carpal tunnel syndrome patients. Exp Neurol 223:192–202CrossRef
Zurück zum Zitat Helgason T, Gargiulo P, Jóhannesdóttir F et al. (2005) Monitoring muscle growth and tissue changes induced by electrical stimulation of denervated degenerated muscles with CT and stereolithographic 3D modeling. Artif Organs 29:440–443CrossRef Helgason T, Gargiulo P, Jóhannesdóttir F et al. (2005) Monitoring muscle growth and tissue changes induced by electrical stimulation of denervated degenerated muscles with CT and stereolithographic 3D modeling. Artif Organs 29:440–443CrossRef
Zurück zum Zitat Hulliger M, Matthews PB, Noth J (1977) Static and dynamic fusimotor action on the response of IA fibres to low frequency sinusoidal stretching of widely ranging amplitude. J Physiol Lond 267:811–838CrossRef Hulliger M, Matthews PB, Noth J (1977) Static and dynamic fusimotor action on the response of IA fibres to low frequency sinusoidal stretching of widely ranging amplitude. J Physiol Lond 267:811–838CrossRef
Zurück zum Zitat Kern H, Carraro U (2014) Home-based functional electrical stimulation for long-term denervated human muscle: history, basics, results and perspectives of the Vienna rehabilitation strategy. Eur J Transl Myol 24:3296PubMedPubMedCentral Kern H, Carraro U (2014) Home-based functional electrical stimulation for long-term denervated human muscle: history, basics, results and perspectives of the Vienna rehabilitation strategy. Eur J Transl Myol 24:3296PubMedPubMedCentral
Zurück zum Zitat Kern H, Boncompagni S, Rossini K et al. (2004a) Long-term denervation in humans causes degeneration of both contractile and excitation- contraction coupling apparatus, which is reversible by functional electrical stimulation (FES): a role for myofiber regeneration? J Neuropathol Exp Neurol 3:919–931CrossRef Kern H, Boncompagni S, Rossini K et al. (2004a) Long-term denervation in humans causes degeneration of both contractile and excitation- contraction coupling apparatus, which is reversible by functional electrical stimulation (FES): a role for myofiber regeneration? J Neuropathol Exp Neurol 3:919–931CrossRef
Zurück zum Zitat Kern H, Boncompagni S, Rossini K et al. (2004b) Long-term denervation in humans causes degeneration of both contractile and excitation-contraction coupling apparatus, which is reversible by functional electrical stimulation (FES): a role for myofiber regeneration? J Neuropathol Exp Neurol 63:919–931CrossRef Kern H, Boncompagni S, Rossini K et al. (2004b) Long-term denervation in humans causes degeneration of both contractile and excitation-contraction coupling apparatus, which is reversible by functional electrical stimulation (FES): a role for myofiber regeneration? J Neuropathol Exp Neurol 63:919–931CrossRef
Zurück zum Zitat Kern H, Rossini K, Carraro U et al. (2005) Muscle biopsies show that FES of denervated muscles reverses human muscle degeneration from permanent spinal motoneuron lesion. JRRD 42:43–53CrossRef Kern H, Rossini K, Carraro U et al. (2005) Muscle biopsies show that FES of denervated muscles reverses human muscle degeneration from permanent spinal motoneuron lesion. JRRD 42:43–53CrossRef
Zurück zum Zitat Kern H, Carraro U, Adami N et al. (2010) Home-based functional electrical stimulation rescues permanently denervated muscles in paraplegic patients with complete lower motor neuron lesion. Neurorehabil Neural Repair 24:709–721CrossRef Kern H, Carraro U, Adami N et al. (2010) Home-based functional electrical stimulation rescues permanently denervated muscles in paraplegic patients with complete lower motor neuron lesion. Neurorehabil Neural Repair 24:709–721CrossRef
Zurück zum Zitat Kern H, Hofer C, Loefler S et al. (2017) Atrophy, ultra-structural disorders, severe atrophy and degeneration of denervated human muscle in SCI and Aging. Implications for their recovery by functional electrical stimulation, updated 2017. Neurol Res 39:660–666CrossRef Kern H, Hofer C, Loefler S et al. (2017) Atrophy, ultra-structural disorders, severe atrophy and degeneration of denervated human muscle in SCI and Aging. Implications for their recovery by functional electrical stimulation, updated 2017. Neurol Res 39:660–666CrossRef
Zurück zum Zitat Kesar T, Chou L-W, Binder-Macleod SA (2008) Effects of stimulation frequency versus pulse duration modulation on muscle fatigue. J Electromyogr Kinesiol 18:662–671CrossRef Kesar T, Chou L-W, Binder-Macleod SA (2008) Effects of stimulation frequency versus pulse duration modulation on muscle fatigue. J Electromyogr Kinesiol 18:662–671CrossRef
Zurück zum Zitat Koh ES, Kim HC, Lim J-Y (2017) The effects of electromyostimulation application timing on denervated skeletal muscle atrophy. Muscle Nerve 56:E154–E161CrossRef Koh ES, Kim HC, Lim J-Y (2017) The effects of electromyostimulation application timing on denervated skeletal muscle atrophy. Muscle Nerve 56:E154–E161CrossRef
Zurück zum Zitat Macefield VG (2013) Discharge rates and discharge variability of muscle spindle afferents in human chronic spinal cord injury. Clin Neurophysiol 124:114–119CrossRef Macefield VG (2013) Discharge rates and discharge variability of muscle spindle afferents in human chronic spinal cord injury. Clin Neurophysiol 124:114–119CrossRef
Zurück zum Zitat Mayr W, Hofer C, Bijak M et al. (2003) Functional electrical stimulation (FES) of denervated muscles: existing and prospective technological solutions. Basic Appl Myol 6:287–290 Mayr W, Hofer C, Bijak M et al. (2003) Functional electrical stimulation (FES) of denervated muscles: existing and prospective technological solutions. Basic Appl Myol 6:287–290
Zurück zum Zitat Mödlin M, Forstner C, Hofer C et al. (2005) Electrical stimulation of denervated muscles: first results of a clinical study. Artif Organs 29:203–206CrossRef Mödlin M, Forstner C, Hofer C et al. (2005) Electrical stimulation of denervated muscles: first results of a clinical study. Artif Organs 29:203–206CrossRef
Zurück zum Zitat Mulcahey MJ, Smith BT, Betz RR (1999) Evaluation of the lower motor neuron integrity of upper extremity muscles in high level spinal cord injury. Spinal Cord 37:585–591CrossRef Mulcahey MJ, Smith BT, Betz RR (1999) Evaluation of the lower motor neuron integrity of upper extremity muscles in high level spinal cord injury. Spinal Cord 37:585–591CrossRef
Zurück zum Zitat Salmons S, Ashley Z, Sutherland H et al. (2005) Functional electrical stimulation of denervated muscles: basic issues. Artif Organs 29:199–202CrossRef Salmons S, Ashley Z, Sutherland H et al. (2005) Functional electrical stimulation of denervated muscles: basic issues. Artif Organs 29:199–202CrossRef
Zurück zum Zitat Smit CAJ, Haverkamp GLG, de Groot S et al. (2012) Effects of electrical stimulation-induced gluteal versus gluteal and hamstring muscles activation on sitting pressure distribution in persons with a spinal cord injury. Spinal Cord 50:590–594CrossRef Smit CAJ, Haverkamp GLG, de Groot S et al. (2012) Effects of electrical stimulation-induced gluteal versus gluteal and hamstring muscles activation on sitting pressure distribution in persons with a spinal cord injury. Spinal Cord 50:590–594CrossRef
Zurück zum Zitat Stickler Y, Martinek J, Hofer C, Rattay F (2008) A finite element model of the electrically stimulated human thigh: changes due to denervation and training. Artif Organs 32:620–624CrossRef Stickler Y, Martinek J, Hofer C, Rattay F (2008) A finite element model of the electrically stimulated human thigh: changes due to denervation and training. Artif Organs 32:620–624CrossRef
Zurück zum Zitat Thomas CK, Häger CK, Klein CS (2017) Increases in human motoneuron excitability after cervical spinal cord injury depend on the level of injury. J Neurophysiol 117:684–691CrossRef Thomas CK, Häger CK, Klein CS (2017) Increases in human motoneuron excitability after cervical spinal cord injury depend on the level of injury. J Neurophysiol 117:684–691CrossRef
Zurück zum Zitat Zijdewind I, Gant K, Bakels R, Thomas CK (2012) Do additional inputs change maximal voluntary motor unit firing rates after spinal cord injury? Neurorehabil Neural Repair 26:58–67CrossRef Zijdewind I, Gant K, Bakels R, Thomas CK (2012) Do additional inputs change maximal voluntary motor unit firing rates after spinal cord injury? Neurorehabil Neural Repair 26:58–67CrossRef
Metadaten
Titel
Strukturelle und Funktionelle Elektrostimulation bei Schädigung des unteren motorischen Neurons
verfasst von
Ines Bersch-Porada
Copyright-Jahr
2021
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-61705-2_8