Skip to main content

2019 | OriginalPaper | Buchkapitel

2. Big Data in Gesundheitswesen und Medizin

verfasst von : Stefan Rüping, Jil Sander

Erschienen in: Gesundheit digital

Verlag: Springer Berlin Heidelberg

Zusammenfassung

In Medizin und Gesundheitswesen sind immer größere Mengen immer vielfältigerer Daten verfügbar, die zunehmend schneller generiert werden. Dieser allgemeine Trend wird als Big Data bezeichnet. Die Analyse von Big Data mit Methoden des maschinellen Lernens führt zur Entwicklung innovativer Lösungen, die neue medizinische Einsichten generieren und die Qualität und Effizienz im Gesundheitssystem erhöhen können. Prototypische Beispiele existieren im Bereich der Analyse klinischer Texte, der klinischen Entscheidungsunterstützung, der Analyse von Daten aus öffentlichen Datenquellen oder Wearables und in Form der Entwicklung persönlicher Assistenten. Diese Potenziale bringen aber auch neue Herausforderungen im Bereich Datenschutz und in der Transparenz bzw. Nachvollziehbarkeit der Ergebnisse für den medizinischen Experten mit sich.
Fußnoten
1
In der Statistik und im maschinellen Lernen haben sich unterschiedliche Sprachgebräuche herausgebildet, dort werden Merkmale Variablen genannt und insbesondere das Zielmerkmal als abhängige Variable bezeichnet.
 
Literatur
Zurück zum Zitat Aggarwal CC, Yu PS (2008) Privacy-preserving data mining: models and algorithms. Springer, USCrossRef Aggarwal CC, Yu PS (2008) Privacy-preserving data mining: models and algorithms. Springer, USCrossRef
Zurück zum Zitat Alaa AM, Hu S, Schaar M (2017) Learning from clinical judgments: semi-markov-modulated marked Hawkes processes for risk prognosis. Proceedings of the 34th international conference on machine learning. PMLR 70:60–69 Alaa AM, Hu S, Schaar M (2017) Learning from clinical judgments: semi-markov-modulated marked Hawkes processes for risk prognosis. Proceedings of the 34th international conference on machine learning. PMLR 70:60–69
Zurück zum Zitat Amir S et al (2017) Quantifying Mental Health from Social Media with Neural User Embeddings. Proceedings of machine learning for healthcare 2017, PMLR 68:306–321 Amir S et al (2017) Quantifying Mental Health from Social Media with Neural User Embeddings. Proceedings of machine learning for healthcare 2017, PMLR 68:306–321
Zurück zum Zitat Bishop C (2006) Pattern recognition and machine learning. Springer, New York Bishop C (2006) Pattern recognition and machine learning. Springer, New York
Zurück zum Zitat Choi E et al (2016) Doctor AI: predicting clinical events via recurrent neural networks. Proceedings of the 1st machine learning for healthcare conference. PMLR 56:301–318 Choi E et al (2016) Doctor AI: predicting clinical events via recurrent neural networks. Proceedings of the 1st machine learning for healthcare conference. PMLR 56:301–318
Zurück zum Zitat Craven MW, Shavlik JW (1996) Extracting tree-structured representations of trained networks. Adv Neural Process Sys 8:24–30 Craven MW, Shavlik JW (1996) Extracting tree-structured representations of trained networks. Adv Neural Process Sys 8:24–30
Zurück zum Zitat Dempsey WH et al (2016) iSurvive: an interpretable, event-time prediction model for mHealth. Proceedings of the 34th international conference on machine learning. PMLR 70:970–979 Dempsey WH et al (2016) iSurvive: an interpretable, event-time prediction model for mHealth. Proceedings of the 34th international conference on machine learning. PMLR 70:970–979
Zurück zum Zitat Dwork C (2006) Differential privacy. 33rd international colloquium on automata, languages and programming, part II (ICALP 2006). Springer, Heidelberg, S 1–12 Dwork C (2006) Differential privacy. 33rd international colloquium on automata, languages and programming, part II (ICALP 2006). Springer, Heidelberg, S 1–12
Zurück zum Zitat Ferrucci D et al (2010) Building Watson: an overview of the deepQA Project. AI magazin, Fall 2010, Association for the Advancement of Artificial Intelligence, S 59–79 Ferrucci D et al (2010) Building Watson: an overview of the deepQA Project. AI magazin, Fall 2010, Association for the Advancement of Artificial Intelligence, S 59–79
Zurück zum Zitat Fletcher RR et al (2011) Wearable sensor platform and mobile application for use in cognitive behavioral therapy for drug addiction and PTSD. Proceedings of 2011 annual international conference of the IEEE engineering in medicine and biology society, Boston, S 1802–1805. https://doi.org/10.1109/iembs.2011.6090513 Fletcher RR et al (2011) Wearable sensor platform and mobile application for use in cognitive behavioral therapy for drug addiction and PTSD. Proceedings of 2011 annual international conference of the IEEE engineering in medicine and biology society, Boston, S 1802–1805. https://​doi.​org/​10.​1109/​iembs.​2011.​6090513
Zurück zum Zitat Futoma J, Hariharan S, Heller K (2017) Learning to detect sepsis with a multitask Gaussian process RNN classifier. Proceedings of the 34th international conference on machine learning. PMLR 70:1174–1182 Futoma J, Hariharan S, Heller K (2017) Learning to detect sepsis with a multitask Gaussian process RNN classifier. Proceedings of the 34th international conference on machine learning. PMLR 70:1174–1182
Zurück zum Zitat Garvin JH et al (2018) Automating quality measures for heart failure using natural language processing: a descriptive study in the department of veterans affairs. JMIR Med Inform 6(1):e5CrossRefPubMedPubMedCentral Garvin JH et al (2018) Automating quality measures for heart failure using natural language processing: a descriptive study in the department of veterans affairs. JMIR Med Inform 6(1):e5CrossRefPubMedPubMedCentral
Zurück zum Zitat Giansanti Daniele et al (2008) Assessment of fall-risk by means of a neural network based on parameters assessed by a wearable device during posturography. Med Eng Phys 30:367–372CrossRefPubMed Giansanti Daniele et al (2008) Assessment of fall-risk by means of a neural network based on parameters assessed by a wearable device during posturography. Med Eng Phys 30:367–372CrossRefPubMed
Zurück zum Zitat Gonzalez-Hernandez G et al (2017) Capturing the patient’s perspective: a review of advances in natural language processing of health-related text. IMIA Yearb Med Inform 1:214–227CrossRefPubMedPubMedCentral Gonzalez-Hernandez G et al (2017) Capturing the patient’s perspective: a review of advances in natural language processing of health-related text. IMIA Yearb Med Inform 1:214–227CrossRefPubMedPubMedCentral
Zurück zum Zitat Grace K, Salvatier J, Dafoe A, Zhang B, O (2017) When will AI exceed human performance? Evidence from AI experts. arXiv preprint. arXiv:1705.08807 Grace K, Salvatier J, Dafoe A, Zhang B, O (2017) When will AI exceed human performance? Evidence from AI experts. arXiv preprint. arXiv:​1705.​08807
Zurück zum Zitat Gravina R et al (2017) Multi-sensor fusion in body sensor networks: state-of-the-art and research challenges. Inf Fusion 35:68–80CrossRef Gravina R et al (2017) Multi-sensor fusion in body sensor networks: state-of-the-art and research challenges. Inf Fusion 35:68–80CrossRef
Zurück zum Zitat Grosskreutz H et al (2012) An enhanced relevance criterion for more concise supervised pattern. KDD ’12, Proceedings of the 18th ACM SIGKDD conference on knowledge discovery and data mining (KDD 2012). ACM, S 1442–1450 Grosskreutz H et al (2012) An enhanced relevance criterion for more concise supervised pattern. KDD ’12, Proceedings of the 18th ACM SIGKDD conference on knowledge discovery and data mining (KDD 2012). ACM, S 1442–1450
Zurück zum Zitat Grosskreutz H, Lemmen B, Rüping S (2010) Privacy-preserving data-mining. Informatik-Spektrum 33:380–383CrossRef Grosskreutz H, Lemmen B, Rüping S (2010) Privacy-preserving data-mining. Informatik-Spektrum 33:380–383CrossRef
Zurück zum Zitat Haq HUI, Ahmad R, Hussain SUI (2017) Intelligent EHRs: predicting procedure codes from diagnosis codes. 31st conference on neural information processing systems (NIPS 2017), Long Beach Haq HUI, Ahmad R, Hussain SUI (2017) Intelligent EHRs: predicting procedure codes from diagnosis codes. 31st conference on neural information processing systems (NIPS 2017), Long Beach
Zurück zum Zitat Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, 2. Aufl. Springer, New YorkCrossRef Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, 2. Aufl. Springer, New YorkCrossRef
Zurück zum Zitat Kao HC, Tang KF, Chang EY (2018) Context-aware symptom checking for disease diagnosis using hierarchical reinforcement learning. Proceedings of AAAI coference on artificial intelligence Kao HC, Tang KF, Chang EY (2018) Context-aware symptom checking for disease diagnosis using hierarchical reinforcement learning. Proceedings of AAAI coference on artificial intelligence
Zurück zum Zitat Kim B, Khanna R, Koyejo S (2016) Examples are not Enough, Learn to Criticize! Criticism for Interpretability. Neural Information Processing Systems. Adv Neural Inf Process Syst 2280–2288 Kim B, Khanna R, Koyejo S (2016) Examples are not Enough, Learn to Criticize! Criticism for Interpretability. Neural Information Processing Systems. Adv Neural Inf Process Syst 2280–2288
Zurück zum Zitat King RC et al (2017) Application of data fusion techniques and technologies for wearable health monitoring. Med Eng Phys 42:1–12CrossRefPubMed King RC et al (2017) Application of data fusion techniques and technologies for wearable health monitoring. Med Eng Phys 42:1–12CrossRefPubMed
Zurück zum Zitat Laney D (2001) 3D data management: controlling data volume, velocity and variety. META Group, Stamford Laney D (2001) 3D data management: controlling data volume, velocity and variety. META Group, Stamford
Zurück zum Zitat Limsopatham N, Collier N (2016) Normalising medical concepts in social media texts by learning semantic representation. Proceedings of the 54th annual meeting of the association for computational linguistics, Berlin, S 1014–1023 Limsopatham N, Collier N (2016) Normalising medical concepts in social media texts by learning semantic representation. Proceedings of the 54th annual meeting of the association for computational linguistics, Berlin, S 1014–1023
Zurück zum Zitat Lipton ZC et al (2016) Learning to diagnose with LSTM recurrent neural networks. International conference on learning representations (ICLR 2016) Lipton ZC et al (2016) Learning to diagnose with LSTM recurrent neural networks. International conference on learning representations (ICLR 2016)
Zurück zum Zitat Madan S et al (2016) The BEL information extraction workflow (BELIEF): evaluation in the biocreative v bel and iat track. Database J Biol Database Curation 2016:baw136 (PMC)CrossRefPubMedPubMedCentral Madan S et al (2016) The BEL information extraction workflow (BELIEF): evaluation in the biocreative v bel and iat track. Database J Biol Database Curation 2016:baw136 (PMC)CrossRefPubMedPubMedCentral
Zurück zum Zitat Mikolov T et al (2013) Distributed representations of words and phrases and their compositionality. Adv Neural Inf Process Sys 26:3111–3119 Mikolov T et al (2013) Distributed representations of words and phrases and their compositionality. Adv Neural Inf Process Sys 26:3111–3119
Zurück zum Zitat Mintz M, Bills S, Snow R, Jurafsky D (2009) Distant supervision for relation extraction without labeled data. Proceedings of the joint conference of the 47th annual meeting of the ACL and the 4th international joint conference on natural language processing of the AFNLP 2. Association for Computational Linguistics, Stroudsburg, USA, S 1003–1011 Mintz M, Bills S, Snow R, Jurafsky D (2009) Distant supervision for relation extraction without labeled data. Proceedings of the joint conference of the 47th annual meeting of the ACL and the 4th international joint conference on natural language processing of the AFNLP 2. Association for Computational Linguistics, Stroudsburg, USA, S 1003–1011
Zurück zum Zitat Montavon G, Samek W, Müller KR (2017) Methods for interpreting and understanding deep neural networks. Digit Signal Process 73:1–15CrossRef Montavon G, Samek W, Müller KR (2017) Methods for interpreting and understanding deep neural networks. Digit Signal Process 73:1–15CrossRef
Zurück zum Zitat Nguyen H, Patrick J (2016) Text mining in clinical domain: dealing with noise. KDD ’16, Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining 22, ACM, S 549–558 Nguyen H, Patrick J (2016) Text mining in clinical domain: dealing with noise. KDD ’16, Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining 22, ACM, S 549–558
Zurück zum Zitat O’Connor K et al (2014) Pharmacovigilance on twitter? Mining tweets for adverse drug reactions. Am Med Inform Assoc 2014:924–933 O’Connor K et al (2014) Pharmacovigilance on twitter? Mining tweets for adverse drug reactions. Am Med Inform Assoc 2014:924–933
Zurück zum Zitat Osthus D et al (2017) Dynamic Bayesian influenza forecasting in the United States with hierarchical discrepancy. arXiv preprint. arXiv:1708.09481 Osthus D et al (2017) Dynamic Bayesian influenza forecasting in the United States with hierarchical discrepancy. arXiv preprint. arXiv:​1708.​09481
Zurück zum Zitat Pommerening K et al (2014) Leitfaden zum Datenschutz in medizinischen Forschungsprojekten – Generische Lösungen der TMF 2.0. Medizinisch Wissenschaftliche Verlagsgesellschaft Pommerening K et al (2014) Leitfaden zum Datenschutz in medizinischen Forschungsprojekten – Generische Lösungen der TMF 2.0. Medizinisch Wissenschaftliche Verlagsgesellschaft
Zurück zum Zitat Quinlan JR (1993) C4.5: Programs for machine learning. Machine learning. Morgan Kaufmann, San Mateo Quinlan JR (1993) C4.5: Programs for machine learning. Machine learning. Morgan Kaufmann, San Mateo
Zurück zum Zitat Rajpurkar P, Hannun AY, Haghpanahi M, Bourn C, Ng AY (2017) Cardiologist-level arrhythmia detection with convolutional neural networks. arXiv preprint. arXiv:1707.01836 Rajpurkar P, Hannun AY, Haghpanahi M, Bourn C, Ng AY (2017) Cardiologist-level arrhythmia detection with convolutional neural networks. arXiv preprint. arXiv:​1707.​01836
Zurück zum Zitat Ribeiro MT, Singh S, Guestrin C (2016) “Why should I trust you?”: Explaining the Predictions of any classifier. KDD ’16, Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, S 1135-1144. https://doi.org/10.1145/2939672.2939778 Ribeiro MT, Singh S, Guestrin C (2016) “Why should I trust you?”: Explaining the Predictions of any classifier. KDD ’16, Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, S 1135-1144. https://​doi.​org/​10.​1145/​2939672.​2939778
Zurück zum Zitat Sculley D et al (2015) Hidden technical debt in machine learning systems. Adv Neural Inf Process Sys 28:817–824 Sculley D et al (2015) Hidden technical debt in machine learning systems. Adv Neural Inf Process Sys 28:817–824
Zurück zum Zitat Shearer C (2000) The CRISP-DM model: the new blueprint for data mining. J Data Warehouse 5:13–22 Shearer C (2000) The CRISP-DM model: the new blueprint for data mining. J Data Warehouse 5:13–22
Zurück zum Zitat Sutton R, Barto A (1998) Reinforcement learning: an introduction. MIT Press, Cambridge Sutton R, Barto A (1998) Reinforcement learning: an introduction. MIT Press, Cambridge
Zurück zum Zitat Sweeney L (2000) Simple demographics often identify people uniquely. Carnegie Mellon University, Data privacy Working Paper 3. Pittsburgh Sweeney L (2000) Simple demographics often identify people uniquely. Carnegie Mellon University, Data privacy Working Paper 3. Pittsburgh
Zurück zum Zitat Szegedy et al (2015). Going deeper with convolutions. Proceedings of 2015 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, Boston Szegedy et al (2015). Going deeper with convolutions. Proceedings of 2015 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, Boston
Zurück zum Zitat Tamang S et al (2015) Detecting unplanned care from clinician notes in electronic health records. J Oncol Pract 11:3CrossRef Tamang S et al (2015) Detecting unplanned care from clinician notes in electronic health records. J Oncol Pract 11:3CrossRef
Zurück zum Zitat Turing AM (1950) Computing machinery and intelligence. Mind 49:433–460CrossRef Turing AM (1950) Computing machinery and intelligence. Mind 49:433–460CrossRef
Zurück zum Zitat Wang Z, Brudno M (2017) Towards a directory of rare disease specialists: identifying experts from publication history. Proceedings of machine learning for healthcare 2017. PMLR: 352–360 Wang Z, Brudno M (2017) Towards a directory of rare disease specialists: identifying experts from publication history. Proceedings of machine learning for healthcare 2017. PMLR: 352–360
Zurück zum Zitat Yang Y, Fasching PA, Tresp V (2017) Predictive modeling of therapy decisions in metastatic breast cancer with recurrent neural network encoder and multinomial hierarchical regression decoder. 2017 IEEE international conference on healthcare informatics (ICHI), Park City, S 46–55. https://doi.org/10.1109/ichi.2017.51 Yang Y, Fasching PA, Tresp V (2017) Predictive modeling of therapy decisions in metastatic breast cancer with recurrent neural network encoder and multinomial hierarchical regression decoder. 2017 IEEE international conference on healthcare informatics (ICHI), Park City, S 46–55. https://​doi.​org/​10.​1109/​ichi.​2017.​51
Zurück zum Zitat Yildirim P, Ekmekci IO, Holzinger A (2013) On knowledge discovery in open medical data on the example of the fda drug adverse event reporting system for alendronate (Fosamax). Human-computer interaction and knowledge discovery in complex, unstructured, Big Data, S 95–206 Yildirim P, Ekmekci IO, Holzinger A (2013) On knowledge discovery in open medical data on the example of the fda drug adverse event reporting system for alendronate (Fosamax). Human-computer interaction and knowledge discovery in complex, unstructured, Big Data, S 95–206
Metadaten
Titel
Big Data in Gesundheitswesen und Medizin
verfasst von
Stefan Rüping
Jil Sander
Copyright-Jahr
2019
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-57611-3_2