skip to main content
10.1145/2939672.2939770acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article
Public Access

ABRA: Approximating Betweenness Centrality in Static and Dynamic Graphs with Rademacher Averages

Published:13 August 2016Publication History

ABSTRACT

We present ABRA, a suite of algorithms to compute and maintain probabilistically-guaranteed, high-quality, approximations of the betweenness centrality of all nodes (or edges) on both static and fully dynamic graphs. Our algorithms use progressive random sampling and their analysis rely on Rademacher averages and pseudodimension, fundamental concepts from statistical learning theory. To our knowledge, this is the first application of these concepts to the field of graph analysis. Our experimental results show that ABRA is much faster than exact methods, and vastly outperforms, in both runtime and number of samples, state-of-the-art algorithms with the same quality guarantees.

References

  1. D. Anguita, A. Ghio, L. Oneto, and S. Ridella. A deep connection between the Vapnik-Chervonenkis entropy and the Rademacher complexity. IEEE Trans. Neural Netw. Learn. Sys., 25 (12): 2202--2211, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  2. J. M. Anthonisse. The rush in a directed graph. TR BN 9/71, Stichting Mathematisch Centrum, 1971.Google ScholarGoogle Scholar
  3. D. A. Bader, S. Kintali, K. Madduri, and M. Mihail. Approximating betweenness centrality. Algorithms and Models for the Web-Graph, 124--137, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. E. Bergamini and H. Meyerhenke. Fully-dynamic approximation of betweenness centrality. ESA'15.Google ScholarGoogle Scholar
  5. }BergaminiM15arXivE. Bergamini and H. Meyerhenke. Approximating betweenness centrality in fully-dynamic networks. Internet Mathematics, to appear.Google ScholarGoogle Scholar
  6. E. Bergamini, H. Meyerhenke, and C. L. Staudt. Approximating betweenness centrality in large evolving networks. ALENEX'15, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. S. Boucheron, O. Bousquet, and G. Lugosi. Theory of classification : A survey of some recent advances. ESAIM: Probability and Statistics, 9: 323--375, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  8. S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004. Google ScholarGoogle ScholarCross RefCross Ref
  9. U. Brandes. A faster algorithm for betweenness centrality. J. Math. Sociol., 25 (2): 163--177, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  10. U. Brandes and C. Pich. Centrality estimation in large networks. Int. J. Bifurc. Chaos, 17 (7): 2303--2318, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  11. T. Elomaa and M. Kaariainen. Progressive Rademacher sampling. AAAI '01, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. D. Erdos, V. Ishakian, A. Bestavros, and E. Terzi. A divide-and-conquer algorithm for betweenness centrality. SDM'15, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  13. L. C. Freeman. A set of measures of centrality based on betweenness. Sociometry, 40: 35--41, 1977.Google ScholarGoogle ScholarCross RefCross Ref
  14. R. Geisberger, P. Sanders, and D. Schultes. Better approximation of betweenness centrality. ALENEX'08, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. O. Green, R. McColl, and D. Bader. A fast algorithm for streaming betweenness centrality. PASSAT'12, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. T. Hayashi, T. Akiba, and Y. Yoshida. Fully dynamic betweenness centrality maintenance on massive networks. VLDB'16, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. Kas, M. Wachs, K. M. Carley, and L. R. Carley. Incremental algorithm for updating betweenness centrality in dynamically growing networks. ASONAM'13, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. N. Kourtellis, G. D. F. Morales, and F. Bonchi. Scalable online betweenness centrality in evolving graphs. IEEE Trans. Knowl. Data Eng., 27 (9): 2494--2506, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M.-J. Lee, J. Lee, J. Y. Park, R. H. Choi, and C.-W. Chung. QUBE: A quick algorithm for updating betweenness centrality. WWW'12, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data, 2014.Google ScholarGoogle Scholar
  21. M. E. J. Newman. Networks -- An Introduction. Oxford University Press, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. L. Oneto, A. Ghio, D. Anguita, and S. Ridella. An improved analysis of the Rademacher data-dependent bound using its self bounding property. Neur. Netw., 44:0, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  23. D. Pollard. Convergence of stochastic processes. Springer-Verlag, 1984.Google ScholarGoogle ScholarCross RefCross Ref
  24. M. Riondato and E. M. Kornaropoulos. Fast approximation of betweenness centrality through sampling. Data Mining Knowl. Disc., 30: (2) 438--475, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. Riondato and E. Upfal. Approximating betweenness centrality in static and dynamic graphswith Rademacher averages (extended version) http://rionda.to/papers/RiondatoUpfal-ABRA-ext.pdf, 2016.Google ScholarGoogle Scholar
  26. M. Riondato and E. Upfal. Mining frequent itemsets through progressive sampling with Rademacher averages. KDD'15, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. A. E. Saríyüce, E. Saule, K. Kaya, and U. V. Çatalyürek. Shattering and compressing networks for betweenness centrality. SDM'15, 2015.Google ScholarGoogle Scholar
  28. S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, 2014. Google ScholarGoogle ScholarCross RefCross Ref
  29. C. Staudt, A. Sazonovs, and H. Meyerhenke. NetworKit: A tool suite for high-performance network analysis. Network Science, to appear.Google ScholarGoogle Scholar
  30. V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1999. Google ScholarGoogle Scholar

Index Terms

  1. ABRA: Approximating Betweenness Centrality in Static and Dynamic Graphs with Rademacher Averages

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader