skip to main content
10.1145/1274871.1274876acmconferencesArticle/Chapter ViewAbstractPublication PagesnparConference Proceedingsconference-collections
Article

Single camera flexible projection

Published:04 August 2007Publication History

ABSTRACT

We introduce a flexible projection framework that is capable of modeling a wide variety of linear, nonlinear, and hand-tailored artistic projections with a single camera. This framework introduces a unified geometry for all of these types of projections using the concept of a flexible viewing volume. With a parametric representation of the viewing volume, we obtain the ability to create curvy volumes, curvy near and far clipping surfaces, and curvy projectors. Through a description of the framework's geometry, we illustrate its capabilities to recreate existing projections and reveal new projection variations. Further, we apply two techniques for rendering the framework's projections: ray casting, and a limited GPU based scanline algorithm that achieves real-time results.

References

  1. Agarwala, A., Agrawala, M., Cohen, M., Salesin, D., And Szeliski, R. 2006. Photographing long scenes with multiviewpoint panoramas. ACM Transactions on Graphics 25, 3, 853--861. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Agrawala, M., Zorin, D., and Munzner, T. 2000. Artistic multiprojection rendering. In Proceedings of the Eurographics Workshop on Rendering Techniques 2000, Springer-Verlag, 125--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Carlbom, I., and Paciorek, J. 1978. Planar geometric projections and viewing transformations. ACM Comput. Surv. 10, 4, 465--502. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Carpendale, M. S. T., and Montagnese, C. 2001. A framework for unifying presentation space. In UIST '01: Proceedings of the 14th annual ACM symposium on User interface software and technology, ACM Press, 61--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Claus, D., and Fitzgibbon, A. W. 2005. A rational function lens distortion model for general cameras. In Proc. of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), IEEE Computer Society, vol. 1, 213--219. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Coleman, P., and Singh, K. 2004. Ryan: rendering your animation nonlinearly projected. In NPAR '04: Proceedings of the 3rd international symposium on Non-photorealistic animation and rendering, ACM Press, 129--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Collomosse, J. P., and Hall, P. M. 2003. Cubist style rendering from photographs. IEEE Transactions on Visualization and Computer Graphics 9, 4, 443--453. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Coquillart, S. 1990. Extended free-form deformation: a culpturing tool for 3d geometric modeling. Computer Graphics (Proceedings of ACM SIGGRAPH 90) 24, 4, 187--196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Dargaud, G. 2007. Fisheye photography. http://www.gdargaud.net/Photo/Fisheye.html, January.Google ScholarGoogle Scholar
  10. Glassner, A. S. 2000. Cubism and cameras: Free-form optics for computer graphics. Tech. Rep. MSR-TR-2000-05, Microsoft.Google ScholarGoogle Scholar
  11. Glassner, A. S. 2004. Digital cubism. IEEE Computer Graphics and Applications 24, 3 (May-Jun), 82--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Groller, E. 1995. Nonlinear ray tracing: Visualizing strange worlds. The Visual Computer 11, 5 (May), 263--274.Google ScholarGoogle ScholarCross RefCross Ref
  13. Gupta, R., and Hartley, R. I. 1997. Linear pushbroom cameras. IEEE Trans. Pattern Anal. Mach. Intell. 19, 9, 963--975. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Inakage, M. 1991. Non-linear perspective projections. In Modeling in Computer Graphics (Proceedings of the IFIP WG 5.10), 203--215.Google ScholarGoogle ScholarCross RefCross Ref
  15. Kolb, C., Mitchell, D., and Hanrahan, P. 1995. A realistic camera model for computer graphics. In Proceedings of ACM SIGGRAPH 95, ACM Press / ACM SIGGRAPH, 317--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Levene, J. 1998. A framework for non-realistic projections. Master's thesis, Massachusetts Institute of Technology.Google ScholarGoogle Scholar
  17. Locker, J. L. 2000. The Magic of M. C. Escher. Harry N. Abrams Inc., New York.Google ScholarGoogle Scholar
  18. Mei, C., Popescu, V., and Sacks, E. 2005. The occlusion camera. Computer Graphics Forum 24, 3, 335--342.Google ScholarGoogle ScholarCross RefCross Ref
  19. Popescu, V., Sacks, E., and Mei, C. 2006. Sample-based cameras for feed forward reflection rendering. IEEE Transactions on Visualization and Computer Graphics 12, 6, 1590--1600. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Radmacher, P., and Bishop, G. 1998. Multiple-center-of-projection images. In Proceedings of ACM SIGGRAPH 98, ACM Press / ACM SIGGRAPH, 199--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Salomon, D. 2006. Transformations and Projections in Computer Graphics. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Sederberg, T. W., and Parry, S. R. 1986. Free-form deformation of solid geometric models. In Computer Graphics (Proceedings of ACM SIGGRAPH 86), 20, 4, ACM Press, 151--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Singh, K., and Balakrishnan, R. 2004. Visualizing 3d scenes using non-linear projections and data mining of previous camera movements. In AFRIGRAPH '04: Proceedings of the 3rd international conference on Computer graphics, virtual reality, visualisation and interaction in Africa, ACM Press, 41--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Singh, K. 2002. A fresh perspective. In Graphics Interface, 17--24.Google ScholarGoogle Scholar
  25. Wang, L., Zhao, Y., Mueller, K., and Kaufman, A. 2005. The magic volume lens: An interactive focus+context technique for volume rendering. VIS 00, 47.Google ScholarGoogle Scholar
  26. Watt, A. 2000. 3D Computer Graphics, third ed. Addison-Wesley Publishing Company Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Weiskopf, D., Schafhitzel, T., and Ertl, T. 2004. Gpu-based nonlinear ray tracing. Computer Graphics Forum 23, 3, 625--633.Google ScholarGoogle ScholarCross RefCross Ref
  28. Weiskopf, D. 2000. Four-dimensional non-linear ray tracing as a visualization tool for gravitational physics. VIS 00, 12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Willats, J., and Durand, F. 2005. Defining pictorial style: Lessons from linguistics and computer graphics. Axiomathes 15, 319--351(33).Google ScholarGoogle ScholarCross RefCross Ref
  30. Wood, D. N., Finkelstein, A., Hughes, J. F., Thayer, C. E., and Salesin, D. H. 1997. Multiperspective panoramas for cel animation. In Proceedings of ACM SIGGRAPH 97, ACM Press / ACM SIGGRAPH, 243--250. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Wyvill, G., and McNaughton, C. 1990. Optical models. In Proceedings of the eighth international conference of the Computer Graphics Society on CG International '90: computer graphics around the world, Springer-Verlag, 83--93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Yang, Y., Chen, J. X., and Beheshti, M. 2005. Nonlinear perspective projections and magic lenses: 3d view deformation. IEEE Computer Graphics and Applications 25, 1, 76--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Yu, J., and Mcmillan, L. 2004. A framework for multiperspective rendering. In 15th Eurographics Symposium on Rendering (EGSR04), 61--68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Yu, J., and McMillan, L. 2004. General linear cameras. In Computer Vision - ECCV 2004, Springer Berlin / Heidelberg, vol. 2, 14--27.Google ScholarGoogle Scholar
  35. Zomet, A., Feldman, D., Peleg, S., and Weinshall, D. 2003. Mosaicing new views: The crossed-slits projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 6, 741--754. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Single camera flexible projection

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        NPAR '07: Proceedings of the 5th international symposium on Non-photorealistic animation and rendering
        August 2007
        157 pages
        ISBN:9781595936240
        DOI:10.1145/1274871

        Copyright © 2007 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 4 August 2007

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • Article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader