Skip to main content

The Coagulation System in Humans

  • Protocol
  • First Online:
Haemostasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 992))

Abstract

Complex, interrelated systems exist to maintain the fluidity of the blood in the vascular system while allowing for the rapid formation of a solid blood clot to prevent hemorrhaging subsequent to blood vessel injury. These interrelated systems are collectively referred to as haemostasis. The components involved in the haemostatic mechanism consist of vessel walls, platelets, coagulation factors, inhibitors, and the fibrinolytic system. In the broadest sense, a series of cascades involving coagulation proteins and enzymes, as well as cell surfaces (platelets and endothelial cells), work together to generate thrombin, the key enzyme in coagulation, subsequently leading to the formation of a fibrin clot. However, there also exist direct and indirect inhibitors of thrombin to ensure that clot formation does not go uncontrolled. Once the fibrin clot is formed, the fibrinolytic system ensures that the clot is lysed so that it does not become a pathological complication. Taken together, the systems exist to balance each other and maintain order. The balance of coagulation and fibrinolysis keeps the haemostatic system functioning efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrew M, Paes B, Johnston M (1990) Development of the hemostatic system in the neonate and young infant. Am J Pediatr Hematol Oncol 12:95–104

    Article  PubMed  CAS  Google Scholar 

  2. Andrew M, Paes B, Milner R, Johnston M, Mitchell L, Tollefsen DM, Powers P (1987) Development of the human coagulation system in the full-term infant. Blood 70:165–172

    PubMed  CAS  Google Scholar 

  3. Andrew M, Paes B, Milner R, Johnston M, Mitchell L, Tollefsen DM, Castle V, Powers P (1988) Development of the human coagulation system in the healthy premature infant. Blood 72:1651–1657

    PubMed  CAS  Google Scholar 

  4. Andrew M, Vegh P, Johnston M, Bowker J, Ofosu F, Mitchell L (1992) Maturation of the hemostatic system during childhood. Blood 80:1998–2005

    PubMed  CAS  Google Scholar 

  5. Johnston M, Zipursky A (1980) Microtechnology for the study of the blood coagulation system in newborn infants. Can J Med Technol 42: 159–164

    Google Scholar 

  6. Andrew M (1995) Developmental hemostasis: relevance to thromboembolic complications in pediatric patients. Thromb Haemost 74: 415–425

    PubMed  CAS  Google Scholar 

  7. Monagle P, Chan A, Massicotte P, Chalmers E, Michelson AD (2004) Antithrombotic therapy in children: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest 126:645S–687S

    Article  PubMed  CAS  Google Scholar 

  8. Andrew M, David M, Adams M, Ali K, Anderson R, Barnard D, Mernstein M, Brisson L, Cairney B, DeSai D, Grant R, Isreals S, Jardine L, Luke B, Massicotte P, Silva M (1994) Venous thromboembolic complications (VTE) in children: first analyses of the Canadian Registry of VTE. Blood 83:1251–1257

    PubMed  CAS  Google Scholar 

  9. Andrew M (1997) The relevance of developmental hemostasis to hemorrhagic disorders of newborns. Semin Perinatol 21:70–85

    Article  PubMed  CAS  Google Scholar 

  10. Sutor A (1992) Thrombosis in the newborn and infants. In: Poller L, Thomson J (eds) Thrombosis and its management. Churchill Livingstone, Edinburgh, pp 126–133

    Google Scholar 

  11. Kurachi K, Davie EW (1977) Activation of human factor XI (plasma thromboplastin antecedent) by factor XIIa (activated Hageman factor). Biochemistry 16:5831–5839

    Article  PubMed  CAS  Google Scholar 

  12. Nemerson Y (1966) The reaction between bovine brain tissue factor and factors VII and X. Biochemistry 5:601–608

    Article  PubMed  CAS  Google Scholar 

  13. Hoffman M, Monroe DM, Oliver JA, Roberts HR (1995) Factors IXa and Xa play distinct roles in tissue factor-dependent initiation of coagulation. Blood 86:1794–1801

    PubMed  CAS  Google Scholar 

  14. Nemerson Y (2007) Tissue factor and hemostasis. Blood 71:1–8

    Google Scholar 

  15. Naito K, Fujikawa K (1991) Activation of human blood coagulation factor XI independent of factor XII. Factor XI is activated by thrombin and factor XIa in the presence of negatively charged surfaces. J Biol Chem 266:7353–7358

    PubMed  CAS  Google Scholar 

  16. Ofosu FA, Sie P, Modi GJ, Fernandez F, Buchanan MR, Blajchman MA, Boneu B, Hirsh J (1987) The inhibition of thrombin-dependent positive-feedback reactions is critical to the expression of the anticoagulant effect of heparin. Biochem J 243:579–588

    PubMed  CAS  Google Scholar 

  17. Ofosu FA, Liu L, Freedman J (1996) Control mechanisms in thrombin generation. Semin Thromb Hemost 22:303–308

    Article  PubMed  CAS  Google Scholar 

  18. Cade JF, Hirsh J, Martin M (1969) Placental barrier to coagulation factors: its relevance to the coagulation defect at birth and to haemorrhage in the newborn. Br Med J 2:281–283

    Article  PubMed  CAS  Google Scholar 

  19. Gitlin D, Biasucci A (1969) Development of gamma G, gamma A, gamma M, beta IC-beta IA, C 1 esterase inhibitor, ceruloplasmin, transferrin, hemopexin, haptoglobin, fibrinogen, plasminogen, alpha 1-antitrypsin, orosomucoid, beta-lipoprotein, alpha 2-macroglobulin, and prealbumin in the human conceptus. J Clin Invest 48:1433–1446

    Article  PubMed  CAS  Google Scholar 

  20. Zilliacus H, Ottelin AM, Mattsson T (1966) Blood clotting and fibrinolysis in human ­foetuses. Biol Neonat 10:108–112

    Article  PubMed  CAS  Google Scholar 

  21. Reverdiau-Moalic P, Delahousse B, Body G, Bardos P, Leroy J, Gruel Y (1996) Evolution of blood coagulation activators and inhibitors in the healthy human fetus. Blood 88:900–906

    PubMed  CAS  Google Scholar 

  22. Andrew M, Karpatkin M (1982) A simple screening test for evaluating prolonged partial thromboplastin times in newborn infants. J Pediatr 101:610–612

    Article  PubMed  CAS  Google Scholar 

  23. Gordon EM, Ratnoff OD, Saito H, Gross S, Jones PK (1980) Studies on some coagulation factors (Hageman factor, plasma prekallikrein, and high molecular weight kininogen) in the normal newborn. Am J Pediatr Hematol Oncol 2:213–216

    PubMed  CAS  Google Scholar 

  24. Mazurier C, Daffos F, Forestier F (1992) Electrophoretic and functional characteristics of the von Willebrand factor in human fetal plasma. Br J Haematol 81:263–270

    Article  PubMed  CAS  Google Scholar 

  25. Witt I, Müller H, Künzer W (1969) Evidence for the existence of foetal fibrinogen. Thromb Diath Haemorrh 22:101–109

    PubMed  CAS  Google Scholar 

  26. Francis JL, Armstrong DJ (1982) Sialic acid and enzymatic desialation of cord blood fibrinogen. Haemostasis 11:223–228

    PubMed  CAS  Google Scholar 

  27. Lerant I, Kovacs T, Papp B, Mandl J, Lambin P, Machovich R (1990) Interaction of thrombin with endothelial cells in the presence of fibrinogen and alpha 2-macroglobulin. Haematologia (Budap) 23:161–169

    CAS  Google Scholar 

  28. Sie P, Ofosu F, Fernandez F, Buchanan MR, Petitou M, Boneu B (1986) Respective role of antithrombin III and heparin cofactor II in the in vitro anticoagulant effect of heparin and of various sulphated polysaccharides. Br J Haematol 64:707–714

    Article  PubMed  CAS  Google Scholar 

  29. Tollefsen DM, Pestka CA, Monafo WJ (1983) Activation of heparin cofactor II by dermatan sulfate. J Biol Chem 258:6713–6716

    PubMed  CAS  Google Scholar 

  30. Mascellani G, Liverani L, Bianchini P, Parma B, Torri G, Bisio A, Guerrini M, Casu B (1993) Structure and contribution to the heparin cofactor II-mediated inhibition of thrombin of naturally oversulphated sequences of dermatan sulphate. Biochem J 296:639–648

    PubMed  CAS  Google Scholar 

  31. Eisenberg PR, Siegel JE, Abendschein DR, Miletich JP (1993) Importance of factor Xa in determining the procoagulant activity of whole-blood clots. J Clin Invest 91:1877–1883

    Article  PubMed  CAS  Google Scholar 

  32. Prager NA, Abendschein DR, McKenzie CR, Eisenberg PR (1995) Role of thrombin compared with factor Xa in the procoagulant activity of whole blood clots. Circulation 92:962–967

    Article  PubMed  CAS  Google Scholar 

  33. Weitz JI, Hudoba M, Massel D, Maraganore J, Hirsh J (1990) Clot-bound thrombin is protected from inhibition by heparin-antithrombin III but is susceptible to inactivation by antithrombin III-independent inhibitors. J Clin Invest 86:385–391

    Article  PubMed  CAS  Google Scholar 

  34. Hogg PJ, Jackson CM (1989) Fibrin monomer protects thrombin from inactivation by heparin-antithrombin III: implications for heparin efficacy. Proc Natl Acad Sci U S A 86:3619–3623

    Article  PubMed  CAS  Google Scholar 

  35. Bendayan P, Boccalon H, Dupouy D, Boneu B (1994) Dermatan sulfate is a more potent inhibitor of clot-bound thrombin than unfractionated and low molecular weight heparins. Thromb Haemost 71:576–580

    PubMed  CAS  Google Scholar 

  36. Monagle PT, Andrew M (2000) Hemorrhagic and thromboembolic complications during infancy and childhood. In: Colman RW, Hirsh J, Marder VJ, Clowes AW, George JN (eds) Hemostasis and thrombosis: basic principles and clinical practice. Lippincott Williams & Wilkins, Philadelphia, PA, pp 1053–1070

    Google Scholar 

  37. Schmidt B, Mitchell L, Ofosu FA, Andrew M (1989) Alpha-2-macroglobulin is an important progressive inhibitor of thrombin in neonatal and infant plasma. Thromb Haemost 62:1074–1077

    PubMed  CAS  Google Scholar 

  38. Levine JJ, Udall JN Jr, Evernden BA, Epstein MF, Bloch KJ (1987) Elevated levels of alpha 2-macroglobulin-protease complexes in infants. Biol Neonate 51:149–155

    Article  PubMed  CAS  Google Scholar 

  39. Mitchell L, Piovella F, Ofosu F, Andrew M (1991) Alpha-2-macroglobulin may provide protection from thromboembolic events in antithrombin III-deficient children. Blood 78:2299–2304

    PubMed  CAS  Google Scholar 

  40. Dahlback B (1995) The protein C anticoagulant system: inherited defects as basis for venous thrombosis. Thromb Res 77:1–43

    Article  PubMed  CAS  Google Scholar 

  41. Schwarz HP, Mutean W, Watzke H, Richter B, Griffin JH (1988) Low total protein S antigen but high protein S activity due to decreased C4b-binding protein in neonates. Blood 71:562–565

    PubMed  CAS  Google Scholar 

  42. Menashi S, Aurousseau MH, Gozin D, Daffos F, D’Angelo A, Forestier F, Boffa MC (1999) High levels of circulating thrombomodulin in human foetuses and children. Thromb Haemost 81:906–909

    PubMed  CAS  Google Scholar 

  43. Knöfler R, Hofmann S, Weissbach G, Kuhlisch E, Neef B, Otte M, Pargac N, Nachtrodt G (1998) Molecular markers of the endothelium, the coagulation and the fibrinolytic systems in healthy newborns. Semin Thromb Hemost 24:453–461

    Article  PubMed  Google Scholar 

  44. Girard TJ, Warren LA, Novotny WF, Likert KM, Brown SG, Miletich JP, Broze GJ Jr (1989) Functional significance of the Kunitz-type inhibitory domains of lipoprotein-associated coagulation inhibitor. Nature 338:518–520

    Article  PubMed  CAS  Google Scholar 

  45. Broze GJ Jr (1995) Tissue factor pathway inhibitor. Thromb Haemost 74:90–93

    PubMed  CAS  Google Scholar 

  46. Lindahl AK (1997) Tissue factor pathway inhibitor: from unknown coagulation inhibitor to major antithrombotic principle. Cardiovasc Res 33:286–291

    Article  PubMed  CAS  Google Scholar 

  47. Sandset PM (1996) Tissue factor pathway inhibitor (TFPI)—an update. Haemostasis 26: 156–165

    Google Scholar 

  48. Camici M, Sagripanti A (1999) Tissue factor pathway inhibitor. Minerva Med 90:25–32

    PubMed  CAS  Google Scholar 

  49. Lindahl AK, Jacobsen PB, Sandset PM, Abildgaard U (1991) Tissue factor pathway inhibitor with high anticoagulant activity is increased in post-heparin plasma and in plasma from cancer patients. Blood Coagul Fibrinolysis 2:713–721

    Article  PubMed  CAS  Google Scholar 

  50. Weissbach G, Harenberg J, Wendisch J, Pargac N, Thomas K (1994) Tissue factor pathway inhibitor in infants and children. Thromb Res 73:441–446

    Article  PubMed  CAS  Google Scholar 

  51. Shah JK, Mitchell LG, Paes B, Ofosu FA, Schmidt B, Andrew M (1992) Thrombin inhibition is impaired in plasma of sick neonates. Pediatr Res 31:391–395

    Article  PubMed  CAS  Google Scholar 

  52. Andrew M, Schmidt B, Mitchell L, Paes B, Ofosu F (1990) Thrombin generation in newborn plasma is critically dependent on the concentration of prothrombin. Thromb Haemost 63:27–30

    PubMed  CAS  Google Scholar 

  53. Fischer AM, Tapon-Bretaudiere J, Bros A, Josso F (1981) Respective roles of antithrombin III and alpha 2 macroglobulin in thrombin inactivation. Thromb Haemost 45:51–54

    PubMed  CAS  Google Scholar 

  54. Andrew M, Mitchell L, Berry L, Paes B, Delorme M, Ofosu F, Burrows R, Khambalia B (1992) An anticoagulant dermatan sulfate ­proteoglycan circulates in the pregnant woman and her fetus. J Clin Invest 89:321–326

    Article  PubMed  CAS  Google Scholar 

  55. Suarez CR, Menendez CE, Walenga JM, Fareed J (1984) Neonatal and maternal hemostasis: value of molecular markers in the assessment of hemostatic status. Semin Thromb Hemost 10:280–284

    Article  PubMed  CAS  Google Scholar 

  56. Bauer KA, Weiss LM, Sparrow D, Vokonas PS, Rosenberg RD (1987) Aging-associated changes in indices of thrombin generation and protein C activation in humans. Normative Aging Study. J Clin Invest 80:1527–1534

    Article  PubMed  CAS  Google Scholar 

  57. Andrew M, Mitchell L, Vegh P, Ofosu F (1994) Thrombin regulation in children differs from adults in the absence and presence of heparin. Thromb Haemost 72:836–842

    PubMed  CAS  Google Scholar 

  58. Collen D, Lijnen HR (1991) Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 78:3114–3124

    PubMed  CAS  Google Scholar 

  59. Francis CW, Marder VJ (1992) Physiologic regulation and pathologic disorders of fibrinolysis. In: Colman RW, Hirsh J, Marder VJ, Salzman EW (eds) Hemostasis and thrombosis: basic principles and clinical practice. JB Lippincott, Philadelphia, PA, pp 1076–1103

    Google Scholar 

  60. Barrett AJ (1981) Alpha 2-macroglobulin. Methods Enzymol 80:737–754

    Article  PubMed  CAS  Google Scholar 

  61. Bajzar L (2000) Thrombin activatable fibrinolysis inhibitor and an antifibrinolytic pathway. Arterioscler Thromb Vasc Biol 20:2511–2518

    Article  PubMed  CAS  Google Scholar 

  62. Corrigan JJ Jr, Sleeth JJ, Jeter M, Lox CD (1989) Newborn’s fibrinolytic mechanism: components and plasmin generation. Am J Hematol 32:273–278

    Article  PubMed  CAS  Google Scholar 

  63. Ginsberg JS, Hirsh J, Rainbow AJ, Coates G (1989) Risks to the fetus of radiologic procedures used in the diagnosis of maternal venous thromboembolic disease. Thromb Haemost 61:189–196

    PubMed  CAS  Google Scholar 

  64. Nesheim M (2003) Thrombin and fibrinolysis. Chest 124:33S–39S

    Article  PubMed  CAS  Google Scholar 

  65. Andrew M, Brooker L, Leaker M, Paes B, Weitz J (1992) Fibrin clot lysis by thrombolytic agents is impaired in newborns due to a low plasminogen concentration. Thromb Haemost 68:325–330

    PubMed  CAS  Google Scholar 

  66. Hirsh J, Raschke R (2004) Heparin and ­low-molecular-weight heparin: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest 126: 188S–203S

    Article  PubMed  CAS  Google Scholar 

  67. Declerck PJ, Moreau H, Jespersen J, Gram J, Kluft C (1993) Multicenter evaluation of commercially available methods for the immunological determination of plasminogen activator inhibitor-1 (PAI-1). Thromb Haemost 70: 858–863

    PubMed  CAS  Google Scholar 

  68. Gram J, Declerck PJ, Sidelmann J, Jespersen J, Kluft C (1993) Multicentre evaluation of commercial kit methods: plasminogen activator inhibitor activity. Thromb Haemost 70: 852–857

    PubMed  CAS  Google Scholar 

  69. Stevenson KJ, Easton AC, Curry A, Thomson JM, Poller L (1986) The reliability of activated partial thromboplastin time methods and the relationship to lipid composition and ultrastructure. Thromb Haemost 55: 250–258

    PubMed  CAS  Google Scholar 

  70. D’Angelo A, Seveso MP, D’Angelo SV, Gilardoni F, Dettori AG, Bonini P (1990) Effect of clot-detection methods and reagents on activated partial thromboplastin time (APTT). Implications in heparin monitoring by APTT. Am J Clin Pathol 94:297–306

    PubMed  Google Scholar 

Download references

Acknowledgments

Anthony Chan is supported by the Bayer Thrombosis and Haemostasis Research Grant.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Humana Press

About this protocol

Cite this protocol

Chan, A.K.C., Paredes, N. (2013). The Coagulation System in Humans. In: Monagle, P. (eds) Haemostasis. Methods in Molecular Biology, vol 992. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-339-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-339-8_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-338-1

  • Online ISBN: 978-1-62703-339-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics