Yearb Med Inform 2016; 25(01): 152-158
DOI: 10.15265/IY-2016-016
IMIA and Schattauer GmbH
Georg Thieme Verlag KG Stuttgart

A Review of Numerical Simulation and Analytical Modeling for Medical Devices Safety in MRI

J. Kabil
1   IADI U947, INSERM, Université de Lorraine, CHRU Nancy, France
,
L. Belguerras
1   IADI U947, INSERM, Université de Lorraine, CHRU Nancy, France
,
S. Trattnig
2   Department of Biomedical Imaging and Image-guided Therapy, Centre of Excellence, High-Field MR, Medical University of Vienna, Vienna, Austria
,
C. Pasquier
1   IADI U947, INSERM, Université de Lorraine, CHRU Nancy, France
3   Healtis, Nancy, France
,
J. Felblinger
1   IADI U947, INSERM, Université de Lorraine, CHRU Nancy, France
4   CIC-IT 1433, INSERM, CHRU Nancy, France
,
A. Missoffe
1   IADI U947, INSERM, Université de Lorraine, CHRU Nancy, France
› Author Affiliations
Further Information

Publication History

10 November 2016

Publication Date:
06 March 2018 (online)

Summary

Objectives: To review past and present challenges and ongoing trends in numerical simulation for MRI (Magnetic Resonance Imaging) safety evaluation of medical devices.

Methods: A wide literature review on numerical and analytical simulation on simple or complex medical devices in MRI electromagnetic fields shows the evolutions through time and a growing concern for MRI safety over the years. Major issues and achievements are described, as well as current trends and perspectives in this research field.

Results: Numerical simulation of medical devices is constantly evolving, supported by calculation methods now well-established. Implants with simple geometry can often be simulated in a computational human model, but one issue remaining today is the experimental validation of these human models. A great concern is to assess RF heating on implants too complex to be traditionally simulated, like pacemaker leads. Thus, ongoing researches focus on alternative hybrids methods, both numerical and experimental, with for example a transfer function method. For the static field and gradient fields, analytical models can be used for dimensioning simple implants shapes, but limited for complex geometries that cannot be studied with simplifying assumptions.

Conclusions: Numerical simulation is an essential tool for MRI safety testing of medical devices. The main issues remain the accuracy of simulations compared to real life and the studies of complex devices; but as the research field is constantly evolving, some promising ideas are now under investigation to take up the challenges.

 
  • References

  • 1 ©OECD/2015, OECD Data, OECD Publishing, Paris.. https://data.oecd.org.
  • 2 ©OECD/2015, Hip and knee replacement, OECD Publishing, Paris.. DOI:10.1787/health_glance-2015-36-en.
  • 3 ISO/TS 10974:2012, Assessment of the safety of magnetic resonance imaging for patients with an active implantable medical device.
  • 4 ASTM F2052 - 15, Standard Test Method for Measurement of Magnetically Induced Displacement Force on Medical Devices in the Magnetic Resonance Environment.
  • 5 Yee K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media.. IEEE Transactions on Antennas and Propagation 1996; May 14 (Suppl. 05) 302-7.
  • 6 Ibrahim TS. Modeling the EM wave interaction with the Body and SAR.. ISMRM Weekend Educational Course Syllabus 2006.
  • 7 Büchler P, Simon A, Burger J, Ginggen A, Crivelli R, Tardy Y. et al. Safety of Active Implantable Devices During MRI Examinations: A Finite Element Analysis of an Implantable Pump.. IEEE Trans Biomed Eng 2007 April;54(4).
  • 8 Xu XG, Eckerman KF. Handbook of Anatomical Models for Radiation Dosimetry.. Series in Medical Physics and Biomedical Engineering; 2009.
  • 9 Xu XG, Chao TC, Bozkurt A. VIP-MAN: an image-based whole-body adult male model constructed from color photographs of the visible human project for multi-particle Monte Carlo calculations.. Health Physics 2000; May 78 (Suppl. 05) 476-86.
  • 10 Caon M. Voxel-based computational models of real human anatomy: a review.. Radiat Environ Biophys 2004; Feb 42 (Suppl. 04) 229-35.
  • 11 Consortium of Computational Human Phantoms (CCHP). 2011 http://www.virtualphantoms.org/phantoms.htm.
  • 12 Kim CH, Jeong JH, Yeom YS. Recent Advances in Computational Human Phantom for Monte Carlo Dose Calculation.. Prog Nucl Sci Technol 2012; 3: 7-10.
  • 13 Mispelter J, Lupu M, Briguet A. NMR Probeheads for Biophysical and Biomedical experiments.. Imperial College Press; 2006
  • 14 ASTM F2182 - 11a, Standard Test Method for Measurement of Radio Frequency Induced Heating On or Near Passive Implants During Magnetic Resonance Imaging.
  • 15 Chaudhury A, Khasnavis S, Russell M, Sarathy V. Magnetic Resonance Induced Heating in a Vascular Stent.. Cornell University Library; 2007
  • 16 Rafiroiu D, Ciupa R, Iancu A, Lazar A, Tiseanu I. Numerical analysis of the electric field and temperature changes around carotid stents.. 7th International Symposium on Advanced Topics in Electrical Engineering 2011
  • 17 SPEAG Website. (http://www.speag.com) Generic stent lead simulation with Huygens Source.
  • 18 Pawlenka M, Schaefers G. MR Safety of Implants: Numerical assessment of SAR distribution at design-simplified stents of different lengths placed inside a virtual phantom model investigated at an MR frequency of 63.9 MHz.. Proc Intl Soc Mag Reson Med 2009(17).
  • 19 Busch M, Vollmann W, Bertsch T, Wetzler R, Bornstedt A, Schnackenburg B. et al. On the heating of inductively coupled resonators (stents) during MRI examination.. Magn Reson Med 2005; Oct 54 (Suppl. 04) 775-82.
  • 20 Busch MH, Vollmann W, Schnorr J, Grönemeyer DH. Finite volume analysis of temperature effects induced by active MRI implants with cylindrical symmetry: 1. Properly working devices.. Biomed Eng Online 2005; Apr 8 4: 25.
  • 21 Camps-Raga B, Goertz W, Schaefers G, Mezape Y, Shalev A. A comparative study of numerical and experimental evaluation of RF-induced heating for an endovascular stent-graft at 1.5 T and 3T.. Biomed Tech 2012; 57 (Suppl. 1).
  • 22 Camps-Raga B, Gortz W, Schaefers G, Mezape Y, Shalev A. Numerical and experimental evaluation of SAR hotspots for an endovascular stent graft at 1.5T and 3T.. International Symposium on Electromagnetic Compatibility (EMC EUROPE) 2012
  • 23 Schaefers G, Goertz W, Noureddine Y, Koch C, Pawlenka MJ. Magnetic Resonance (MR) safety testing of implants using numerical simulation for worst-case determination.. General Assembly and Scientific Symposium, XXXth URSI 2011.
  • 24 Ibrahim TS, Tang L, Kangarlu A, Abraham R. Electromagnetic and Modeling Analyses of an implanted device at 3 and 7 T.. J Magn Reson Imaging 2007; Nov 26 (Suppl. 05) 1362-7.
  • 25 Hand JW, McRobbie DW. Effects of hip prostheses in situ exposed to 64 and 128 MHz RF Field.. eMagRes 2012 1(3).
  • 26 Powell J, Papadaki A, Hand J, Hart A, McRobbie D. Numerical simulation of SAR induced around Co-Cr-Mo hip prostheses in situ exposed to RF Fields associated with 1.5 and 3T MRI body coils.. Magn Reson Med 2012; Sep 68 (Suppl. 03) 960-8.
  • 27 Liu Y, Chen J, Shellock F, Kainz W. Computational and experimental studies of orthopedic implants heating under MRI RF coils.. IEEE MTT-S International Microwave Symposium Digest (MTT) 2012
  • 28 Liu Y. Numerical and experimental study of MRI RF signal interactions with various medical devices.. PhD Dissertation, University of Houston Libraries 2012
  • 29 Liu Y, Chen J, Shellock FG, Kainz W. Computational and experimental studies of an orthopedic implant: MRI-related heating at 1.5T/64 MHz and 3T/128 MHz.. J Magn Reson Imaging 2013; Feb 37 (Suppl. 02) 491-7.
  • 30 Angelone LM, Potthast A, Segonne F, Iwaki S, Belliveau JW, Bonmassar G. Metallic electrodes and leads in simultaneous EEG-MRI: Specific absorption rate (SAR) simulation studies.. Bioelectromagnetics 2004; May 25 (Suppl. 04) 285-95.
  • 31 Shen J, Kainz W, Qian S, Wu W, Chen J. Computational study of external fixation devices surface heating in MRI RF environment.. IEEE International Symposium on Electromagnetic Compatibility (EMC) 2012
  • 32 Nyenhuis JA, Miller CR. Calculation of Heating of Passive Implants by the RF Electromagnetic Field in MRI.. XXXth URSI General Assembly and Scientific Symposium 2011
  • 33 Kraff O, Wrede KH, Schoemberg T, Dammann P, Noureddine Y, Orzada S. et al. MR safety assessment of potential RF heating from cranial fixation plates at 7T.. Med Phys 2013; Apr 40 (Suppl. 04) 042302.
  • 34 Jasti S, Singh V, Lazzi G. On the modeling of the electromagnetic fields induced by MRI fields in patients with a retinal implant.. IEEE Antennas and Propagation Society International Symposium 2007
  • 35 Marincas C, Mada M, Rotaru H, Carpenter A, Ciupa R. The thermal effect of Radiofrequency waves near dental implants during MRI examination at 3 Tesla.. Acta Electrotehnica 2013 54(1).
  • 36 Giordano D, Zilberti L, Borsero M, Chiampi M, Bottauscio O. Experimental validation of MRI dosimetric simulations in phantoms including metallic objects.. IEEE Transactions on Magnetics 2014; 50 (Suppl. 11) 1-4.
  • 37 Bottauscio O, Cassarà AM, Hand JW, Giordano D, Zilberti L, Borsero M. et al. Assessment of computational tools for MRI RF dosimetry by comparison with measurements on a laboratory phantom.. Phys Med Biol 2015; Jul 21 60 (Suppl. 14) 5655-80.
  • 38 Andreuccetti D, Fossi R, Petrucci C. An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz - 100 GHz.. Website at http://niremf.ifac.cnr.it/tissprop.IFAC-CNR Florence (Italy), 1997. Based on data published by C. Gabriel et al. in 1996
  • 39 Hasgall PA, Di Gennaro F, Baumgartner C, Neufeld E, Gosselin MC, Payne D. et al. IT’IS Database for thermal and electromagnetic parameters of biological tissues.. Version 3.0, 2015 Sept, www.itis.ethz.ch/database.
  • 40 Murbach M. EMF Risk Assessment: Exposure Assessment and Safety Considerations in MRI and other Environments.. PhD Thesis, Swiss Federal Institute of Technology, Thesis No. 21514, Zurich, 2013.
  • 41 Shrivastava D, Utecht L, Tian J, Hughes J, Vaughan JT. In Vivo Radiofrequency Heating in Swine in a 3T (123.2 MHz) Birdcage Whole Body Coil.. Magn Reson Med 2014; Oct 72 (Suppl. 04) 1141-50.
  • 42 Gosselin MC, Neufeld E, Payne D, Kuster N. Numerical simulation in virtual anatomical models: the devil is in the details.. Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), 2015.
  • 43 Abbasi M, Schaefers G, Sánchez JD, Erni D. Worst-Case Analysis of RF-Induced Heating During MRI Scanning in a Generic Multi-Component Orthopedic Medical Implant Applying the Design of Experiment Method (DoE).. Proc Intl Soc Mag Reson Med 2014;22.
  • 44 Neufeld E, Oikonomidis IV, Iacono MI, Akinnagbe E, Angelone LM, Kainz W. et al. Simulation platform for coupled modeling of EM-induced neuronal dynamics and functionalized anatomical models.. 7th International IEEE/EMBS Conference on Neural Engineering (NER), 2015.
  • 45 Niendorf T, Paul K, Oezerdem C, Graessl A, Klix S, Huelnhagen T. et al. W(h)ither human cardiac and body magnetic resonance at ultrahigh fields?. Technical advances, practical considerations, applications, and clinical opportunities. NMR Biomed 2015 Feb 23.
  • 46 Langman DA, Goldberg IB, Finn JP, Ennis DB. Pacemaker Lead Tip Heating in Abandoned and Pacemaker-Attached Leads at 1.5 Tesla MRI. J Magn Reson Imaging 2011; Feb 33 (Suppl. 02) 426-31.
  • 47 Bottomley PA, Kumar A, Edelstein WA, Allen JM, Karmarkar PV. Designing passive MRI-safe implantable conducting leads with electrodes.. Med Phys 2010; Jul 37 (Suppl. 07) 3828-43.
  • 48 Yeung CJ, Susil RC, Atalar E. RF Safety of Wires in Interventional MRI:Using a Safety Index.. Magn Reson Med 2002; Jan 47 (Suppl. 01) 187-93.
  • 49 Yeung CJ, Susil RC, Atalar E. RF Heating Due to Conductive Wires During MRI Depends on the Phase Distribution of the Transmit Field.. Magn Reson Med 2002; Dec 48 (Suppl. 06) 1096-8.
  • 50 Park SM, Kamondetdacha R, Nyenhuis JA. Calculation of MRI-Induced Heating of an Implanted Medical Lead Wire With an Electric Field Transfer Function.. J Magn Reson Imaging 2007; Nov 26 (Suppl. 05) 1278-85.
  • 51 Feng S, Qiang R, Kainz W, Chen J. A technique to evaluate MRI-induced Electric Fields at the ends of practical implanted lead.. IEEE Transactions on microwave theory and techniques 2015 Jan;63(1).
  • 52 Cabot E, Zastrow E, Kuster N. Safety assessment of AIMDs under MRI Exposure: Tier3 vs.. Tier4 Evaluation of Local RF-induced Heating. International Symposium on Electromagnetic Compatibility, Tokyo (EMC’14/Tokyo), 2014.
  • 53 Missoffe A, Kabil J, Felblinger J, Pasquier C, Vuissoz PA. Determination of a transmission line model of an insulated cable for RF interaction hazard evaluation.. ESMRMB Scientific Session communications, October 2015.
  • 54 Balac S, Caloz G. Induced magnetic field computations using a boundary integral formulation.. Applied Numerical Mathematics 2002; 41: 345-67.
  • 55 Lüdeke KM, Röschmann P, Tischler R. Susceptibility artifacts in NMR imaging.. Magn Reson Imaging 1985; 3 (Suppl. 04) 329-43.
  • 56 Balac S, Benoit-Cattin H, Lamotte T, Odet C. Analytic solution to boundary integral computation of susceptibility induced magnetic field inhomogeneities.. Mathematical and Computer Modelling 2004; 39 4-5 437-55.
  • 57 Olsson MB, Wirestam R, Persson BR. A computer simulation program for MR imaging: Application to RF and static magnetic field imperfections.. Magn Reson Med 1995; Oct 34 (Suppl. 04) 612-7.
  • 58 Balac S, Caloz G. Mathematical modeling and numerical simulation of magnetic susceptibility artifacts in Magnetic Resonance Imaging.. Comput Methods Biomech Biomed Engin 2000; 3 (Suppl. 04) 335-49.
  • 59 Balac S. Simulation numérique des artefacts de susceptibilité magnétique en IRM. Innovation et Technologie en Biologie et Médecine (ITBM) [Numerical simulation of magnetic susceptibility artifacts in MRI.. Innovation and Technology in Biology in Medicine (ITBM)] 1998; 19 (Suppl. 05) 369-79.
  • 60 Condon B, Hadley DM. Potential MR hazard to patients with metallic heart valves: The Lenz effect.. J Magn Reson Imaging 2000; Jul 12 (Suppl. 01) 171-6.
  • 61 Robertson NM, Diaz-Gomez M, Condon B. Estimation of torque on mechanical heart valves due to magnetic resonance imaging including an estimation of the significance of the Lenz effect using a computational model.. Phys Med Biol 2000; Dec 45 (Suppl. 12) 3793-807.
  • 62 Golestanirad L, Dlala E, Wright G, Mosig JR, Graham SJ. Comprehensive analysis of Lenz effect on the artificial heart valves during magnetic resonance imaging.. Progress In Electromagnetics Research 2012; 128: 1-17.
  • 63 Büchler P, Simon A, Burger J, Ginggen A, Crivelli R, Tardy Y, Luechinger R, Olsen S. Safety of Active Implantable Devices During MRI Examinations: A Finite Element Analysis of an Implantable Pump.. IEEE Trans Biomed Eng 2007 April;54(4).
  • 64 Turk EA, Kopanoglu E, Guney S, Bugdayci KE, Ider YZ, Erturk VB. et al. A Simple Analytical Expression for the Gradient Induced Potential on Active Implants During MRI. IEEE Trans Biomed Eng 2012 October;59(10).
  • 65 Zilberti L, Bottauscio O, Chiampi M, Hand J, Lopez HS, Crozier S. Collateral Thermal Effect of MRI-LINAC Gradient Coils on Metallic Hip Prostheses.. IEEE Transaction on Magnetics 2014 Nov;50(11).