Pneumologie 2015; 69(12): 704-710
DOI: 10.1055/s-0035-1563785
Serie: Translationale Forschung in der Pneumologie
© Georg Thieme Verlag KG Stuttgart · New York

COPD Update 2015: Zellbiologie goes Clinic? – Wichtige Forschungsergebnisse für den Kliniker

COPD Update 2015: Cell Biology goes Clinic? – Important Research Findings for Clinicians
B. Schmeck
1   Institut für Lungenforschung, Mitglied des Deutschen Zentrums für Lungenforschung (DZL), Philipps-Universität Marburg, Marburg
2   Klinik für Innere Medizin m. S. Pneumologie, Universitätsklinikum Gießen und Marburg, Standort Marburg
,
L. Jerrentrup
1   Institut für Lungenforschung, Mitglied des Deutschen Zentrums für Lungenforschung (DZL), Philipps-Universität Marburg, Marburg
2   Klinik für Innere Medizin m. S. Pneumologie, Universitätsklinikum Gießen und Marburg, Standort Marburg
,
R. Bals
3   Universitätsklinikum des Saarlandes, Klinik für Innere Medizin V – Pneumologie, Allergologie, Beatmungs- und Umweltmedizin, Homburg/Saar
› Author Affiliations

Subject Editor: M. Witzenrath, Berlin
Further Information

Publication History

eingereicht 08 June 2015

akzeptiert nach Revision 16 October 2015

Publication Date:
09 December 2015 (online)

Zusammenfassung

Die COPD ist eine sehr häufige, chronische, nicht ansteckende Erkrankung, die weltweit eine hohe Mortalität und hohe sozioökonomische Kosten verursacht. Ihre klinische Betrachtung wird zunehmend umfassender und beinhaltet unter anderem die Lungenfunktion, die Exazerbationshäufigkeit, die körperliche Leistungsfähigkeit, das Dyspnoeempfinden und Komorbiditäten. Auf der anderen Seite sind unsere therapeutischen Möglichkeiten aber sehr eingeschränkt: Es gibt zwar mehrere gut verträgliche und wirksame, kombinierbare Bronchodilatatoren aus der Gruppe der langwirksamen Beta2-Mimetika und Anticholinergika, aber kaum Medikamente, die ursächlich in der Pathophysiologie angreifen. Als antiinflammatorische Prinzipien stehen nur die inhalierbaren Glukokortikoide und ein oral verfügbarer Inhibitor der Phosphodiesterase 4 zur Verfügung, die jeweils bei einem Teil der Patienten zu einer Verbesserung der Lungenfunktion führen können. Dieser Mangel an wirksamen ursächlichen Therapieprinzipien einerseits und an Biomarkern für eine klare Patientenstratifizierung andererseits liegt zu großen Teilen in unserem limitierten Verständnis der Pathophysiologie begründet. Daher sollen im Folgenden die aktuellen Fortschritte der klinischen und experimentellen Forschung zur COPD mit Bezug zur Praxis zusammenhängend dargestellt werden.

Abstract

The COPD is a very common, chronic, non-contagious disease causing high mortality as well as high socio-economical costs worldwide. Its clinical assessment progressively becomes more comprehensive including the lung function, the rate of exacerbations, the physical capacity, the sensation of dyspnoea, and comorbidities. On the other hand, our therapeutic options are very limited: Although there are several well-tolerated and effective combinable bronchodilators of the group of long-acting beta2-mimetics and anticholinergics, drugs causally affecting pathophysiology are barely available. As anti-inflammatory principles only inhaled glucocorticoids as well as one orally available inhibitor of phosphodiesterase 4 are approved, each improving the course of disease in a subgroup of patients. This lack of effective causative therapeutic principles on the one hand and of biomarkers clearly stratifying patients on the other hand to a large extend are caused by our limited understanding of the pathophysiology. Therefore, this review presents the current progress in clinical and experimental research on COPD with regard to clinical practice.

 
  • Literatur

  • 1 Gibson J, Loddenkemper R, Sibille Y et al, Hrsg. The European Lung White Book: Respiratory Health and Disease in Europe. 2nd. revised edition. European Respiratory Society; 2013
  • 2 Vestbo J, Agusti A, Wouters EF et al. Should we view chronic obstructive pulmonary disease differently after ECLIPSE? A clinical perspective from the study team. Am J Respir Crit Care Med 2014; 189: 1022-1030
  • 3 Gillissen A. [Novel drugs for COPD treatment]. Pneumologie 2014; 68: 594-598
  • 4 Mushtaq Y. The COPD pipeline. Nature reviews Drug discovery 2014; 13: 253
  • 5 Dijkstra AE, Postma DS, van Ginneken B et al. Novel genes for airway wall thickness identified with combined genome-wide association and expression analyses. Am J Respir Crit Care Med 2015; 191: 547-556
  • 6 Castaldi PJ, Cho MH, San Jose Estepar R et al. Genome-wide association identifies regulatory Loci associated with distinct local histogram emphysema patterns. Am J Respir Crit Care Med 2014; 190: 399-409
  • 7 Stanley SE, Chen JJ, Podlevsky JD et al. Telomerase mutations in smokers with severe emphysema. J Clin Invest 2015; 125: 563-570
  • 8 Bowler RP, Jacobson S, Cruickshank C et al. Plasma sphingolipids associated with chronic obstructive pulmonary disease phenotypes. Am J Respir Crit Care Med 2015; 191: 275-284
  • 9 Ahmed FS, Jiang XC, Schwartz JE et al. Plasma sphingomyelin and longitudinal change in percent emphysema on CT. The MESA lung study. Biomarkers 2014; 19: 207-213
  • 10 Telenga ED, Hoffmann RF, tʼKindt R et al. Untargeted lipidomic analysis in chronic obstructive pulmonary disease. Uncovering sphingolipids. Am J Respir Crit Care Med 2014; 190: 155-164
  • 11 Innes AL, Woodruff PG, Ferrando RE et al. Epithelial mucin stores are increased in the large airways of smokers with airflow obstruction. Chest 2006; 130: 1102-1108
  • 12 Roy MG, Livraghi-Butrico A, Fletcher AA et al. Muc5b is required for airway defence. Nature 2014; 505: 412-416
  • 13 Xue J, Schmidt SV, Sander J et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 2014; 40: 274-288
  • 14 Mizumura K, Cloonan SM, Nakahira K et al. Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J Clin Invest 2014; 124: 3987-4003
  • 15 Heijink IH, Noordhoek JA, Timens W et al. Abnormalities in airway epithelial junction formation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2014; 189: 1439-1442
  • 16 Staudt MR, Buro-Auriemma LJ, Walters MS et al. Airway Basal stem/progenitor cells have diminished capacity to regenerate airway epithelium in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2014; 190: 955-958
  • 17 Inoue H, Nagata N, Kurokawa H et al. iPS cells: a game changer for future medicine. The EMBO journal 2014; 33: 409-417
  • 18 Zuo W, Zhang T, Wu DZ et al. p63(+)Krt5(+) distal airway stem cells are essential for lung regeneration. Nature 2015; 517: 616-620
  • 19 Ott HC, Clippinger B, Conrad C et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nature Med 2010; 16: 927-933
  • 20 Petersen TH, Calle EA, Zhao L et al. Tissue-engineered lungs for in vivo implantation. Science 2010; 329: 538-541
  • 21 Drummond MB, Kirk GD. HIV-associated obstructive lung diseases: insights and implications for the clinician. Lancet Respir Med 2014; 2: 583-592
  • 22 Popescu I, Drummond MB, Gama L et al. Activation-induced cell death drives profound lung CD4(+) T-cell depletion in HIV-associated chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2014; 190: 744-755
  • 23 Celli BR, Locantore N, Yates J et al. Inflammatory biomarkers improve clinical prediction of mortality in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2012; 185: 1065-1072
  • 24 Stolz D, Meyer A, Rakic J et al. Mortality risk prediction in COPD by a prognostic biomarker panel. Eur Respir J 2014; 44: 1557-1570
  • 25 Coxson HO, Dirksen A, Edwards LD et al. The presence and progression of emphysema in COPD as determined by CT scanning and biomarker expression: a prospective analysis from the ECLIPSE study. Lancet Respir Med 2013; 1: 129-136
  • 26 Galban CJ, Han MK, Boes JL et al. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nature Med 2012; 18: 1711-1715
  • 27 Mallia P, Message SD, Contoli M et al. Neutrophil adhesion molecules in experimental rhinovirus infection in COPD. Resp Res 2013; 14: 72
  • 28 Mallia P, Message SD, Contoli M et al. Lymphocyte subsets in experimental rhinovirus infection in chronic obstructive pulmonary disease. Resp Med 2014; 108: 78-85
  • 29 Molyneaux PL, Mallia P, Cox MJ et al. Outgrowth of the bacterial airway microbiome after rhinovirus exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2013; 188: 1224-1231
  • 30 Gohy ST, Detry BR, Lecocq M et al. Polymeric immunoglobulin receptor down-regulation in chronic obstructive pulmonary disease. Persistence in the cultured epithelium and role of transforming growth factor-beta. Am J Respir Crit Care Med 2014; 190: 509-521
  • 31 Kalathil SG, Lugade AA, Pradhan V et al. T-regulatory cells and programmed death 1+ T cells contribute to effector T-cell dysfunction in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2014; 190: 40-50
  • 32 Kiser TH, Allen RR, Valuck RJ et al. Outcomes associated with corticosteroid dosage in critically ill patients with acute exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2014; 189: 1052-1064
  • 33 Celli BR, Decramer M, Wedzicha JA et al. An official American Thoracic Society/European Respiratory Society statement: research questions in COPD. Eur Respir J 2015; 45: 879-905
  • 34 Magnussen H, Disse B, Rodriguez-Roisin R et al. Withdrawal of inhaled glucocorticoids and exacerbations of COPD. N Engl J Med 2014; 371: 1285-1294
  • 35 Barnes PJ, Adcock IM. Glucocorticoid resistance in inflammatory diseases. Lancet 2009; 373: 1905-1917
  • 36 Bafadhel M, Davies L, Calverley PM et al. Blood eosinophil guided prednisolone therapy for exacerbations of COPD: a further analysis. Eur Respir J 2014; 44: 789-791
  • 37 Christenson SA, Steiling K, van den Berge M et al. Asthma-COPD Overlap. Clinical Relevance of Genomic Signatures of Type 2 Inflammation in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2015; 191: 758-766
  • 38 Babu KS, Morjaria JB. Emerging therapeutic strategies in COPD. Drug Discov Today 2015; 20: 371-379
  • 39 Neukamm A, Hoiseth AD, Einvik G et al. Rosuvastatin treatment in stable chronic obstructive pulmonary disease (RODEO): a randomized controlled trial. J Intern Med 2015; 278: 59-67
  • 40 Criner GJ, Connett JE, Aaron SD et al. Simvastatin for the prevention of exacerbations in moderate-to-severe COPD. N Engl J Med 2014; 370: 2201-2210
  • 41 Ingebrigtsen TS, Marott JL, Nordestgaard BG et al. Statin use and exacerbations in individuals with chronic obstructive pulmonary disease. Thorax 2015; 70: 33-40
  • 42 Martinez FJ, Calverley PM, Goehring UM et al. Effect of roflumilast on exacerbations in patients with severe chronic obstructive pulmonary disease uncontrolled by combination therapy (REACT): a multicentre randomised controlled trial. Lancet 2015; 385: 857-866
  • 43 Bardin PG, Dorward MA, Lampe FC et al. Effect of selective phosphodiesterase 3 inhibition on the early and late asthmatic responses to inhaled allergen. Br J Clin Pharmacol 1998; 45: 387-391
  • 44 Franciosi LG, Diamant Z, Banner KH et al. Efficacy and safety of RPL554, a dual PDE3 and PDE4 inhibitor, in healthy volunteers and in patients with asthma or chronic obstructive pulmonary disease: findings from four clinical trials. Lancet Respir Med 2013; 1: 714-727
  • 45 Gaffey K, Reynolds S, Plumb J et al. Increased phosphorylated p38 mitogen-activated protein kinase in COPD lungs. Eur Respir J 2013; 42: 28-41
  • 46 Schmeck B, Zahlten J, Moog K et al. Streptococcus pneumoniae-induced p38 MAPK-dependent phosphorylation of RelA at the interleukin-8 promotor. J Biol Chem 2004; 279: 53241-53247
  • 47 MacNee W, Allan RJ, Jones I et al. Efficacy and safety of the oral p38 inhibitor PH-797804 in chronic obstructive pulmonary disease: a randomised clinical trial. Thorax 2013; 68: 738-745
  • 48 Calverley PM. New treatments for COPD: many miles still to go. Lancet Respir Med 2014; 2: 6-7
  • 49 Russell P, Cass L, Ito K et al. Safety, pharmacokinetic and pharmacodynamic profile of RV568, a narrow spectrum kinase inhibitor, following repeat inhaled dosing in COPD patients European Respiratory Society. Annual Congress; 2013
  • 50 Hsu AC, Starkey MR, Hanish I et al. Targeting PI3K-p110alpha Suppresses Influenza Viral Infection in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2015; 191: 1012-1023
  • 51 Wells JM, O'Reilly PJ, Szul T et al. An aberrant leukotriene A4 hydrolase-proline-glycine-proline pathway in the pathogenesis of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2014; 190: 51-61
  • 52 Paige M, Wang K, Burdick M et al. Role of leukotriene A4 hydrolase aminopeptidase in the pathogenesis of emphysema. J Immunol 2014; 192: 5059-5068
  • 53 Zheng JP, Wen FQ, Bai CX et al. Twice daily N-acetylcysteine 600 mg for exacerbations of chronic obstructive pulmonary disease (PANTHEON): a randomised, double-blind placebo-controlled trial. Lancet Respir Med 2014; 2: 187-194
  • 54 Albert RK, Connett J, Bailey WC et al. Azithromycin for prevention of exacerbations of COPD. N Engl J Med 2011; 365: 689-698
  • 55 WHO. Chronic obstructive pulmonary disease (COPD). World Health Organization fact sheet 315. Im Internet: http://www.who.int/mediacentre/factsheets/fs315/en [Stand: 30.10.2014]
  • 56 Brightling CE, Bleecker ER, Panettieri Jr RA et al. Benralizumab for chronic obstructive pulmonary disease and sputum eosinophilia: a randomised, double-blind, placebo-controlled, phase 2a study. Lancet Respir Med 2014; 2: 891-901
  • 57 Castro M, Wenzel SE, Bleecker ER et al. Benralizumab, an anti-interleukin 5 receptor alpha monoclonal antibody, versus placebo for uncontrolled eosinophilic asthma: a phase 2b randomised dose-ranging study. Lancet Respir Med 2014; 2: 879-890
  • 58 Rennard SI, Dale DC, Donohue JF et al. CXCR2 Antagonist MK-7123-A Phase 2 Proof-of-Concept Trial for Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2015; 191: 1001-1011
  • 59 Kearley J, Silver JS, Sanden C et al. Cigarette smoke silences innate lymphoid cell function and facilitates an exacerbated type I interleukin-33-dependent response to infection. Immunity 2015; 42: 566-579
  • 60 Jackson DJ, Makrinioti H, Rana BM et al. IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo. Am J Respir Crit Care Med 2014; 190: 1373-1382
  • 61 Byers DE, Alexander-Brett J, Patel AC et al. Long-term IL-33-producing epithelial progenitor cells in chronic obstructive lung disease. J Clin Invest 2013; 123: 3967-3982
  • 62 Sims MW, Margolis DJ, Localio AR et al. Impact of pulmonary artery pressure on exercise function in severe COPD. Chest 2009; 136: 412-419
  • 63 Dournes G, Laurent F, Coste F et al. Computed tomographic measurement of airway remodeling and emphysema in advanced chronic obstructive pulmonary disease. Correlation with pulmonary hypertension. Am J Respir Crit Care Med 2015; 191: 63-70
  • 64 Blanco I, Gimeno E, Munoz PA et al. Hemodynamic and gas exchange effects of sildenafil in patients with chronic obstructive pulmonary disease and pulmonary hypertension. Am J Respir Crit Care Med 2010; 181: 270-278
  • 65 Goudie AR, Lipworth BJ, Hopkinson PJ et al. Tadalafil in patients with chronic obstructive pulmonary disease: a randomised, double-blind, parallel-group, placebo-controlled trial. Lancet Respir Med 2014; 2: 293-300
  • 66 Brusselle G. Should we pursue pulmonary vasodilation in patients with COPD?. Lancet Respir Med 2014; 2: 252-254
  • 67 Bond RA. The intrinsic bias of generalizations. Am J Respir Crit Care Med 2014; 189: 359
  • 68 Vonk-Noordegraaf A, Boerrigter BG. Sildenafil: a definitive NO in COPD. Eur Respir J 2013; 42: 893-894
  • 69 Seimetz M, Parajuli N, Pichl A et al. Inducible NOS inhibition reverses tobacco-smoke-induced emphysema and pulmonary hypertension in mice. Cell 2011; 147: 293-305