Z Orthop Unfall 2015; 153(06): 587-596
DOI: 10.1055/s-0035-1546266
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Wahl der richtigen Gleitpaarung in der Hüftendoprothetik

Bearing selection in total hip arthroplasty
R. Sonntag
Klinik für Orthopädie und Unfallchirurgie, Labor für Biomechanik und Implantatforschung, Universitätsklinikum Heidelberg, Zentrum für Orthopädie, Unfallchirurgie und Paraplegiologie, Heidelberg
,
J. Reinders
Klinik für Orthopädie und Unfallchirurgie, Labor für Biomechanik und Implantatforschung, Universitätsklinikum Heidelberg, Zentrum für Orthopädie, Unfallchirurgie und Paraplegiologie, Heidelberg
,
U. Müller
Klinik für Orthopädie und Unfallchirurgie, Labor für Biomechanik und Implantatforschung, Universitätsklinikum Heidelberg, Zentrum für Orthopädie, Unfallchirurgie und Paraplegiologie, Heidelberg
,
J. P. Kretzer
Klinik für Orthopädie und Unfallchirurgie, Labor für Biomechanik und Implantatforschung, Universitätsklinikum Heidelberg, Zentrum für Orthopädie, Unfallchirurgie und Paraplegiologie, Heidelberg
› Author Affiliations
Further Information

Publication History

Publication Date:
14 September 2015 (online)

Zusammenfassung

Der Operateur hat in der Hüftendoprothetik die Auswahl zwischen verschiedenen Materialgleitpaarungen, welche sich in Hart-Weich-Gleitpaarungen, Hart-Hart-Gleitpaarungen und alternative Materialien unterteilen lassen. Idealerweise sollte die Auswahl anhand von evidenzbasierten Daten zu den Verschleißeigenschaften, der Revisionswahrscheinlichkeit und potenziellen, patientenindividuellen Risiken der jeweiligen Materialkombination erfolgen. Während für einige Gleitpaarungen eine recht hochwertige Datenlage vorliegt, existieren zu manchen Materialien kaum zuverlässige Daten. Daher soll die vorliegende Arbeit dem Operateur Bewertungskriterien für die Selektion der Gleitpaarung vermitteln und eine Übersicht über die aktuelle Datenlage der verschiedenen Materialkombinationen geben.

Abstract

Different bearing materials are available in total hip arthroplasty and itʼs the surgeon who has the choice between hard-on-soft, hard-on-hard and alternative materials. Ideally, the material selection should rely on evidence-based data regarding the wear performance, the incidence of revision surgery and other potential bearing-associated risk factors for the corresponding combinations of materials in the individual patient. While there are high-quality studies available for some materials, adequate data is lacking for other materials. Therefore, the current article aims to provide bearing selection criteria for the surgeon and to review the current literature regarding different combinations of bearing materials in total hip arthroplasty.

 
  • Literatur

  • 1 Affatato S, Spinelli M, Zavalloni M et al. Tribology and total hip joint replacement: current concepts in mechanical simulation. Med Eng Phys 2008; 30: 1305-1317
  • 2 Clarke IC, Gustafson A. Clinical and hip simulator comparisons of ceramic-on-polyethylene and metal-on-polyethylene wear. Clin Orthop Relat Res 2000; 379: 34-40
  • 3 Shen FW, Lu Z, McKellop HA. Wear versus thickness and other features of 5-Mrad crosslinked UHMWPE acetabular liners. Clin Orthop Relat Res 2011; 469: 395-404
  • 4 Zietz C, Fabry C, Middelborg L et al. Wear testing and particle characterisation of sequentially crosslinked polyethylene acetabular liners using different femoral head sizes. J Mater Sci Mater Med 2013; 24: 2057-2065
  • 5 Kurtz SM, Gawel HA, Patel JD. History and systematic review of wear and osteolysis outcomes for first-generation highly crosslinked polyethylene. Clin Orthop Relat Res 2011; 469: 2262-2277
  • 6 Endo M, Tipper JL, Barton DC et al. Comparison of wear, wear debris and functional biological activity of moderately crosslinked and non-crosslinked polyethylenes in hip prostheses. Proc Inst Mech Eng H 2002; 216: 111-122
  • 7 Bowsher JG, Williams PA, Clarke IC et al. “Severe” wear challenge to 36 mm mechanically enhanced highly crosslinked polyethylene hip liners. J Biomed Mater Res B Appl Biomater 2008; 86: 253-263
  • 8 Geerdink CH, Grimm B, Ramakrishnan R et al. Crosslinked polyethylene compared to conventional polyethylene in total hip replacement: pre-clinical evaluation, in-vitro testing and prospective clinical follow-up study. Acta Orthop 2006; 77: 719-725
  • 9 Mutimer J, Devane PA, Adams K et al. Highly crosslinked polyethylene reduces wear in total hip arthroplasty at 5 years. Clin Orthop Relat Res 2010; 468: 3228-3233
  • 10 Heisel C, Silva M, Schmalzried TP. In vivo wear of bilateral total hip replacements: conventional versus crosslinked polyethylene. Arch Orthop Trauma Surg 2005; 125: 555-557
  • 11 Digas G, Karrholm J, Thanner J et al. The Otto Aufranc Award. Highly cross-linked polyethylene in total hip arthroplasty: randomized evaluation of penetration rate in cemented and uncemented sockets using radiostereometric analysis. Clin Orthop Relat Res 2004; 429: 6-16
  • 12 Harris WH. The problem is osteolysis. Clin Orthop Relat Res 1995; 311: 46-53
  • 13 Purdue PE, Koulouvaris P, Nestor BJ et al. The central role of wear debris in periprosthetic osteolysis. HSS J 2006; 2: 102-113
  • 14 Elfick AP, Green SM, Krikler S et al. The nature and dissemination of UHMWPE wear debris retrieved from periprosthetic tissue of THR. J Biomed Mater Res A 2003; 65: 95-108
  • 15 Billi F, Benya P, Kavanaugh A et al. The John Charnley Award: an accurate and sensitive method to separate, display, and characterize wear debris: part 1: polyethylene particles. Clin Orthop Relat Res 2012; 470: 329-338
  • 16 Ingham E, Fisher J. Biological reactions to wear debris in total joint replacement. Proc Inst Mech Eng H 2000; 214: 21-37
  • 17 Ingram JH, Stone M, Fisher J et al. The influence of molecular weight, crosslinking and counterface roughness on TNF-alpha production by macrophages in response to ultra high molecular weight polyethylene particles. Biomaterials 2004; 25: 3511-3522
  • 18 Kim YH, Park JW, Kulkarni SS et al. A randomised prospective evaluation of ceramic-on-ceramic and ceramic-on-highly cross-linked polyethylene bearings in the same patients with primary cementless total hip arthroplasty. Int Orthop 2013; 37: 2131-2137
  • 19 Epinette JA, Manley MT. No differences found in bearing related hip survivorship at 10–12 years follow-up between patients with ceramic on highly cross-linked polyethylene bearings compared to patients with ceramic on ceramic bearings. J Arthroplasty 2014; 29: 1369-1372
  • 20 Johanson PE, Digas G, Herberts P et al. Highly crosslinked polyethylene does not reduce aseptic loosening in cemented THA 10-year findings of a randomized study. Clin Orthop Relat Res 2012; 470: 3083-3093
  • 21 Graves S, Davidson D, de Steiger R et al. Annual Report. Australian Orthopaedic Association National Joint Replacement Registry 2014; Adelaide.. Im Internet: https://aoanjrr.dmac.adelaide.edu.au Stand: 21.08.2015
  • 22 Galvin AL, Jennings LM, Tipper JL et al. Wear and creep of highly crosslinked polyethylene against cobalt chrome and ceramic femoral heads. Proc Inst Mech Eng H 2010; 224: 1175-1183
  • 23 Saikko VO, Paavolainen PO, Slatis P. Wear of the polyethylene acetabular cup. Metallic and ceramic heads compared in a hip simulator. Acta Orthop Scand 1993; 64: 391-402
  • 24 Dahl J, Soderlund P, Nivbrant B et al. Less wear with aluminium-oxide heads than cobalt-chrome heads with ultra high molecular weight cemented polyethylene cups: a ten-year follow-up with radiostereometry. Int Orthop 2012; 36: 485-490
  • 25 Dahl J, Snorrason F, Nordsletten L et al. More than 50 % reduction of wear in polyethylene liners with alumina heads compared to cobalt-chrome heads in hip replacements: a 10-year follow-up with radiostereometry in 43 hips. Acta Orthop 2013; 84: 360-364
  • 26 Zichner LP, Willert HG. Comparison of alumina-polyethylene and metal-polyethylene in clinical trials. Clin Orthop Relat Res 1992; 282: 86-94
  • 27 Sychterz CJ, Engh jr. CA, Young AM et al. Comparison of in vivo wear between polyethylene liners articulating with ceramic and cobalt-chrome femoral heads. J Bone Joint Surg Br 2000; 82: 948-951
  • 28 Borroff M, Green M, Gregg P et al. Annual Report. National Joint Registry for England Wales and Northern Ireland 2014; Bristol.. Im Internet: http://www.njrcentre.org.uk Stand: 21.08.2015
  • 29 Howie DW, Holubowycz OT, Middleton R. Large femoral heads decrease the incidence of dislocation after total hip arthroplasty: a randomized controlled trial. J Bone Joint Surg Am 2012; 94: 1095-1102
  • 30 Baykal D, Siskey RS, Haider H et al. Advances in tribological testing of artificial joint biomaterials using multidirectional pin-on-disk testers. J Mech Behav Biomed Mater 2014; 31: 117-134
  • 31 Clarke IC, Gustafson A, Jung H et al. Hip-simulator ranking of polyethylene wear: comparisons between ceramic heads of different sizes. Acta Orthop Scand 1996; 67: 128-132
  • 32 Hermida JC, Bergula A, Chen P et al. Comparison of the wear rates of twenty-eight and thirty-two-millimeter femoral heads on cross-linked polyethylene acetabular cups in a wear simulator. J Bone Joint Surg Am 2003; 85: 2325-2331
  • 33 Bragdon CR, Doerner M, Martell J et al. The 2012 John Charnley Award: Clinical multicenter studies of the wear performance of highly crosslinked remelted polyethylene in THA. Clin Orthop Relat Res 2013; 471: 393-402
  • 34 Cole JC, Lemons JE, Eberhardt AW. Gamma irradiation alters fatigue-crack behavior and fracture toughness in 1900 H and GUR 1050 UHMWPE. J Biomed Mater Res 2002; 63: 559-566
  • 35 Ast MP, John TK, Labbisiere A et al. Fractures of a single design of highly cross-linked polyethylene acetabular liners: an analysis of voluntary reports to the United States Food and Drug Administration. J Arthroplasty 2014; 29: 1231-1235
  • 36 Tower SS, Currier JH, Currier BH et al. Rim cracking of the cross-linked longevity polyethylene acetabular liner after total hip arthroplasty. J Bone Joint Surg Am 2007; 89: 2212-2217
  • 37 Fisher J, Dowson D. Tribology of total artificial joints. Proc Inst Mech Eng H 1991; 205: 73-79
  • 38 Jin ZM, Medley JB, Dowson D. Fluid film lubrication in artificial hip joints. In: Dowson D, Priest M, Dalmaz G, Lubrecht AA, , editors. Tribology and Interface Engineering Series. Elsevier; 2003: 237-256
  • 39 Greenwald AS, Garino JP. Alternative bearing surfaces: the good, the bad, and the ugly. J Bone Joint Surg Am 2001; 83: 68-72
  • 40 Carmignato S, Spinelli M, Affatato S et al. Uncertainty evaluation of volumetric wear assessment from coordinate measurements of ceramic hip joint prostheses. Wear 2011; 270: 584-590
  • 41 Sonntag R, Reinders J, Rieger JS et al. Hard-on-Hard lubrication in the artificial hip under dynamic loading conditions. PLoS One 2013; 8: e71622
  • 42 Liu F, Jin Z, Roberts P et al. Importance of head diameter, clearance, and cup wall thickness in elastohydrodynamic lubrication analysis of metal-on-metal hip resurfacing prostheses. Proc Inst Mech Eng H 2006; 220: 695-704
  • 43 Singh SP, Bhalodiya HP. Head size and dislocation rate in primary total hip arthroplasty. Indian J Orthop 2013; 47: 443-448
  • 44 Klingenstein GG, Yeager AM, Lipman JD et al. Increased range of motion to impingement with large head total hip arthroplasty: point of diminishing returns. Hip Int 2012; 22: 261-265
  • 45 McKee GK, Watson-Farrar J. Replacement of arthritic hips by the McKee-Farrar prosthesis. J Bone Joint Surg Br 1966; 48: 245-259
  • 46 Wiles P. The surgery of the osteoarthritic hip. Br J Surg 1958; 45: 488-497
  • 47 Firkins PJ, Tipper JL, Ingham E et al. A novel low wearing differential hardness, ceramic-on-metal hip joint prosthesis. J Biomech 2001; 34: 1291-1298
  • 48 Fisher J, Firkins P, Tipper J et al. Wear of a Novel Ceramic on Metal Bearings for Hip Prosthesis. In: DʼAntonio JA, Dietrich M, eds. Bioceramics and Alternative Bearings in Joint Arthroplasty. Darmstadt: Steinkopff; 2005: 197-199
  • 49 Goldsmith AA, Isaac GH, Dowson D et al. A comparative joint simulator study of the wear of metal-on-metal and alternative material combinations in hip replacements. Proc Inst Mech Eng H 2000; 214: 39-47
  • 50 Ishida T, Clarke IC, Donaldson TK et al. Comparing ceramic-metal to metal-metal total hip replacements – a simulator study of metal wear and ion release in 32- and 38-mm bearings. J Biomed Mater Res B Appl Biomater 2009; 91: 887-896
  • 51 Affatato S, Leardini W, Jedenmalm A et al. Larger diameter bearings reduce wear in metal-on-metal hip implants. Clin Orthop Relat Res 2007; 456: 153-158
  • 52 Saikko V, Ahlroos T, Revitzer H et al. The effect of acetabular cup position on wear of a large-diameter metal-on-metal prosthesis studied with a hip joint simulator. Tribol Int 2013; 60: 70-76
  • 53 Dowson D, Hardaker C, Flett M et al. A hip joint simulator study of the performance of metal-on-metal joints: Part II: Design. J Arthroplasty 2004; 19: 124-130
  • 54 De Haan R, Pattyn C, Gill HS et al. Correlation between inclination of the acetabular component and metal ion levels in metal-on-metal hip resurfacing replacement. J Bone Joint Surg Br 2008; 90: 1291-1297
  • 55 Dobbs HS, Minski MJ. Metal ion release after total hip replacement. Biomaterials 1980; 1: 193-198
  • 56 Pandit H, Glyn-Jones S, McLardy-Smith P et al. Pseudotumours associated with metal-on-metal hip resurfacings. J Bone Joint Surg Br 2008; 90: 847-851
  • 57 Langton DJ, Jameson SS, Joyce TJ et al. Early failure of metal-on-metal bearings in hip resurfacing and large-diameter total hip replacement: a consequence of excess wear. J Bone Joint Surg Br 2010; 92: 38-46
  • 58 Willert HG, Buchhorn GH, Fayyazi A et al. Metal-on-metal bearings and hypersensitivity in patients with artificial hip joints–a clinical and histomorphological study. J Bone Joint Surg Am 2005; 87: 28-36
  • 59 Glyn-Jones S, Roques A, Taylor A et al. The in vivo linear and volumetric wear of hip resurfacing implants revised for pseudotumor. J Bone Joint Surg Am 2011; 93: 2180-2188
  • 60 Lord JK, Langton DJ, Nargol AVF et al. Volumetric wear assessment of failed metal-on-metal hip resurfacing prostheses. Wear 2011; 272: 79-87
  • 61 Grübl A, Marker M, Brodner W et al. Long-term follow-up of metal-on-metal total hip replacement. J Orthop Res 2007; 25: 841-848
  • 62 Eswaramoorthy V, Moonot P, Kalairajah Y et al. The Metasul metal-on-metal articulation in primary total hip replacement: clinical and radiological results at ten years. J Bone Joint Surg Br 2008; 90: 1278-1283
  • 63 Bernasek TL, Polikandriotis JA, Levering MF et al. Five- to ten-year outcomes for modular metal-on-metal total hip arthroplasty. J Arthroplasty 2013; 28: 1231-1234
  • 64 Australian National Joint Replacement Registry. Supplementary Report 2014: Metal on Metal Bearing Surface in Total Conventional Hip Arthroplasty.. Im Internet: https://aoanjrr.dmac.adelaide.edu.au Stand: 21.08.2015
  • 65 Garbuz D, Tanzer M, Greidanus N et al. The John Charnley Award: Metal-on-Metal hip resurfacing versus large-diameter head metal-on-metal total hip arthroplasty: a randomized clinical trial. Clin Orthop Relat Res 2010; 468: 318-325
  • 66 Bolland BJ, Culliford DJ, Langton DJ et al. High failure rates with a large-diameter hybrid metal-on-metal total hip replacement: clinical, radiological and retrieval analysis. J Bone Joint Surg Br 2011; 93: 608-615
  • 67 Langton DJ, Sidaginamale R, Lord JK et al. Taper junction failure in large-diameter metal-on-metal bearings. Bone Joint Res 2012; 1: 56-63
  • 68 Witt F, Bosker BH, Bishop NE et al. The relation between titanium taper corrosion and cobalt-chromium bearing wear in large-head metal-on-metal total hip prostheses: a retrieval study. J Bone Joint Surg Am 2014; 96: e157
  • 69 Smith AJ, Dieppe P, Vernon K et al. Failure rates of stemmed metal-on-metal hip replacements: analysis of data from the National Joint Registry of England and Wales. Lancet 2012; 379: 1199-1204
  • 70 Langton DJ, Joyce TJ, Jameson SS et al. Adverse reaction to metal debris following hip resurfacing: the influence of component type, orientation and columetric wear. J Bone Joint Surg Br 2011; 93-B: 164-171
  • 71 Hartmann A, Hannemann F, Lutzner J et al. Metal ion concentrations in body fluids after implantation of hip replacements with metal-on-metal bearing–systematic review of clinical and epidemiological studies. PLoS One 2013; 8: e70359
  • 72 EFORT, Arbeitsgemeinschaft Endoprothetik, Deutsche Arthrosehilfe. Aktuelle Konsens-Empfehlungen zur Handhabung von Metall-Metall-Gleitpaarungen; Orthopädie und Unfallchirurgie – Mitteilungen und Nachrichten 3/2012.. Im Internet: http://www.dgu-online.de/fileadmin/published_content/3.Bildung/Zeitschriften/OUMN/OUMN_2012_03.pdf Stand: 21.08.2015
  • 73 Boutin P. Arthroplastie totale de la hanche par prothese en alumine frittee. Etude experimentale et premieres applications cliniques. Rev Chir Orthop Reparatrice Appar Mot 1972; 58: 229-246
  • 74 Affatato S, Spinelli M, Zavalloni M et al. Ceramic-on-metal for total hip replacement: mixing and matching can lead to high wear. Artif Organs 2010; 34: 319-323
  • 75 Al-Hajjar M, Fisher J, Williams S et al. Effect of femoral head size on the wear of metal on metal bearings in total hip replacements under adverse edge-loading conditions. J Biomed Mater Res B Appl Biomater 2013; 101: 213-222
  • 76 Tipper JL, Firkins PJ, Besong AA et al. Characterisation of wear debris from UHMWPE on zirconia ceramic, metal-on-metal and alumina ceramic-on-ceramic hip prostheses generated in a physiological anatomical hip joint simulator. Wear 2001; 250: 120-128
  • 77 Ding Y, Qin CQ, Fu YR et al. In vitro comparison of the biological activity of alumina ceramic and titanium particles associated with aseptic loosening. Biomed Mater 2012; 7: 045019
  • 78 Hatton A, Nevelos JE, Matthews JB et al. Effects of clinically relevant alumina ceramic wear particles on TNF-[alpha] production by human peripheral blood mononuclear phagocytes. Biomaterials 2003; 24: 1193-1204
  • 79 Hatton A, Nevelos JE, Nevelos AA et al. Alumina–alumina artificial hip joints. Part I: a histological analysis and characterisation of wear debris by laser capture microdissection of tissues retrieved at revision. Biomaterials 2002; 23: 3429-3440
  • 80 Savarino L, Baldini N, Ciapetti G et al. Is wear debris responsible for failure in alumina-on-alumina implants?. Acta Orthop 2009; 80: 162-167
  • 81 Mai K, Verioti C, Ezzet K et al. Incidence of ‘squeaking’ after ceramic-on-ceramic total hip arthroplasty. Clin Orthop Relat Res 2009; 468: 413-417
  • 82 Weiss C, Gdaniec P, Hoffmann NP et al. Squeak in hip endoprosthesis systems: an experimental study and a numerical technique to analyze design variants. Med Eng Phys 2010; 32: 604-609
  • 83 Abdel MP, Heyse TJ, Elpers ME et al. Ceramic liner fractures presenting as squeaking after primary total hip arthroplasty. J Bone Joint Surg Am 2014; 96: 27-31
  • 84 Taylor S, Manley MT, Sutton K. The role of stripe wear in causing acoustic emissions from alumina ceramic-on-ceramic bearings. J Arthroplasty 2007; 22: 47-51
  • 85 Walter WL, Insley GM, Walter WK et al. Edge loading in third generation alumina ceramic-on-ceramic bearings: stripe wear. J Arthroplasty 2004; 19: 402-413
  • 86 Owen DH, Russell NC, Smith PN et al. An estimation of the incidence of squeaking and revision surgery for squeaking in ceramic-on-ceramic total hip replacement: a meta-analysis and report from the Australian Orthopaedic Association National Joint Registry. Bone Joint J 2014; 96?B: 181-187
  • 87 Walter WL, Kurtz SM, Esposito C et al. Retrieval analysis of squeaking alumina ceramic-on-ceramic bearings. J Bone Joint Surg Br 2011; 93: 1597-1601
  • 88 Massin P, Lopes R, Masson B et al. Does Biolox Delta ceramic reduce the rate of component fractures in total hip replacement?. Orthop Traumatol Surg Res 2014; 100: S317-321
  • 89 Hamilton WG, McAuley JP, Dennis DA et al. THA with Delta ceramic on ceramic: results of a multicenter investigational device exemption trial. Clin Orthop Relat Res 2010; 468: 358-366
  • 90 Traina F, De Fine M, Di Martino A et al. Fracture of ceramic bearing surfaces following total hip replacement: a systematic review. Biomed Res Int 2013; 157247: 1-8
  • 91 Callaway HG, Flynn W, Ranawat CS et al. Fracture of the femoral head after ceramic-on-polyethylene total hip arthroplasty. J Arthroplasty 1995; 10: 855-859
  • 92 Koo KH, Ha YC, Jung WH et al. Isolated fracture of the ceramic head after third-generation alumina-on-alumina total hip arthroplasty. J Bone Joint Surg Am 2008; 90: 329-336
  • 93 Morlock MM, Witt F, Bishop N et al. Wear of a composite ceramic head caused by liner fracture. Orthopedics 2014; 37: e653-e656
  • 94 Traina F, Tassinari E, De Fine M et al. Revision of ceramic hip replacements for fracture of a ceramic component: AAOS exhibit selection. J Bone Joint Surg Am 2011; 93: e147
  • 95 Petsatodis GE, Papadopoulos PP, Papavasiliou KA et al. Primary cementless total hip arthroplasty with an alumina ceramic-on-ceramic bearing: results after a minimum of twenty years of follow-up. J Bone Joint Surg Am 2010; 92: 639-644
  • 96 Graves S, Davidson D, Tomkins A et al. Annual Report. Australian Orthopaedic Association National Joint Replacement Registry 2013; Adelaide.. Im Internet: https://aoanjrr.dmac.adelaide.edu.au Stand: 21.08.2015
  • 97 Wisbey A, Gregson PJ, Tuke M. Application of PVD TiN coating to Co-Cr-Mo based surgical implants. Biomaterials 1987; 8: 477-480
  • 98 Pappas MJ, Makris G, Buechel FF. Titanium nitride ceramic film against polyethylene. A 48 million cycle wear test. Clin Orthop Relat Res 1995; 317: 64-70
  • 99 Sonntag R, Reinders J, Kretzer JP. Whatʼs next? Alternative materials for articulation in total joint replacement. Acta Biomater 2012; 8: 2434-2441
  • 100 Galvin A, Brockett C, Williams S et al. Comparison of wear of ultra-high molecular weight polyethylene acetabular cups against surface-engineered femoral heads. Proc Inst Mech Eng H 2008; 222: 1073-1080
  • 101 Gutmanas EY, Gotman I. PIRAC Ti nitride coated Ti-6AI-4 V head against UHMWPE acetabular cup-hip wear simulator study. J Mater Sci Mater Med 2004; 15: 327-330
  • 102 Raimondi MT, Pietrabissa R. The in-vivo wear performance of prosthetic femoral heads with titanium nitride coating. Biomaterials 2000; 21: 907-913
  • 103 Harman MK, Banks SA, Hodge WA. Wear analysis of a retrieved hip implant with titanium nitride coating. J Arthroplasty 1997; 12: 938-945
  • 104 Buechel sr. FF, Buechel FF, xHelbig TE et al. Two- to 12-year evaluation of cementless Buechel-Pappas total hip arthroplasty. J Arthroplasty 2004; 19: 1017-1027
  • 105 Evangelista GT, Fulkerson E, Kummer F et al. Surface damage to an Oxinium femoral head prosthesis after dislocation. J Bone Joint Surg Br 2007; 89: 535-537
  • 106 Kop AM, Whitewood C, Johnston DJ. Damage of oxinium femoral heads subsequent to hip arthroplasty dislocation three retrieval case studies. J Arthroplasty 2007; 22: 775-779
  • 107 McCalden RW, Charron KD, Davidson RD et al. Damage of an Oxinium femoral head and polyethylene liner following ‘routine’ total hip replacement. J Bone Joint Surg Br 2011; 93: 409-413
  • 108 Kadar T, Hallan G, Aamodt A et al. Wear and migration of highly cross-linked and conventional cemented polyethylene cups with cobalt chrome or Oxinium femoral heads: a randomized radiostereometric study of 150 patients. J Orthop Res 2011; 29: 1222-1229
  • 109 Morison ZA, Patil S, Khan HA et al. A randomized controlled trial comparing Oxinium and cobalt-chrome on standard and cross-linked polyethylene. J Arthroplasty 2014; 29: 164-168
  • 110 Williams S, Schepers A, Isaac G et al. The 2007 Otto Aufranc Award. Ceramic-on-metal hip arthroplasties: a comparative in vitro and in vivo study. Clin Orthop Relat Res 2007; 465: 23-32
  • 111 Williams S, Al-Hajjar M, Isaac GH et al. Comparison of ceramic-on-metal and metal-on-metal hip prostheses under adverse conditions. J Biomed Mater Res B Appl Biomater 2013; 101: 770-775
  • 112 Isaac GH, Brockett C, Breckon A et al. Ceramic-on-metal bearings in total hip replacement: whole blood metal ion levels and analysis of retrieved components. J Bone Joint Surg Br 2009; 91: 1134-1141
  • 113 Kazi HA, Perera JR, Gillott E et al. A prospective study of a ceramic-on-metal bearing in total hip arthroplasty. Clinical results, metal ion levels and chromosome analysis at two years. Bone Joint J 2013; 95: 1040-1044
  • 114 Zeng Y, Zheng B, Shen B et al. A prospective study of ceramic-on-metal bearings in total hip arthroplasty at four-year follow-up: clinical results, metal ion levels, inflammatory factor levels, and liver-kidney function. J Orthop Sci 2014; 20: 357-363
  • 115 Schouten R, Malone AA, Tiffen C et al. A prospective, randomised controlled trial comparing ceramic-on-metal and metal-on-metal bearing surfaces in total hip replacement. J Bone Joint Surg Br 2012; 94: 1462-1467
  • 116 Reinders J, Sonntag R, Heisel C et al. Wear performance of ceramic-on-metal hip bearings. PLoS One 2013; 8: e73252
  • 117 McKellop H, Shen FW, Lu B et al. Development of an extremely wear-resistant ultra high molecular weight polyethylene for total hip replacements. J Orthop Res 1999; 17: 157-167
  • 118 Muratoglu OK, Bragdon CR, OʼConnor DO et al. A novel method of cross-linking ultra-high-molecular-weight polyethylene to improve wear, reduce oxidation, and retain mechanical properties. Recipient of the 1999 HAP Paul Award. J Arthroplasty 2001; 16: 149-160
  • 119 Oral E, Muratoglu OK. Vitamin E diffused, highly crosslinked UHMWPE: a review. Int Orthop 2011; 35: 215-223
  • 120 Grupp TM, Holderied M, Mulliez MA et al. Biotribology of a vitamin E-stabilized polyethylene for hip arthroplasty – Influence of artificial ageing and third-body particles on wear. Acta Biomater 2014; 10: 3068-3078
  • 121 Salemyr M, Muren O, Ahl T et al. Vitamin-E diffused highly cross-linked polyethylene liner compared to standard liners in total hip arthroplasty. A randomized, controlled trial. Int Orthop 2015; [Epub ahead of print]
  • 122 Lindalen E, Nordsletten L, Hovik O et al. E-vitamin infused highly cross-linked polyethylene: RSA results from a randomised controlled trial using 32 mm and 36 mm ceramic heads. Hip Int 2015; 25: 50-55
  • 123 Culliford D, Maskell J, Judge A et al. A population-based survival analysis describing the association of body mass index on time to revision for total hip and knee replacements: results from the UK general practice research database. BMJ Open 2013; 3: e003614
  • 124 Wright EA, Katz JN, Baron JA et al. Risk factors for revision of primary total hip replacement: results from a national case-control study. Arthritis Care Res (Hoboken) 2012; 64: 1879-1885
  • 125 Prokopetz JJ, Losina E, Bliss RL et al. Risk factors for revision of primary total hip arthroplasty: a systematic review. BMC Musculoskelet Disord 2012; 13: 251
  • 126 Devane PA, Horne JG, Martin K et al. Three-dimensional polyethylene wear of a press-fit titanium prosthesis. Factors influencing generation of polyethylene debris. J Arthroplasty 1997; 12: 256-266
  • 127 Schmalzried TP, Shepherd EF, Dorey FJ et al. The John Charnley Award. Wear is a function of use, not time. Clin Orthop Relat Res 2000; 381: 36-46
  • 128 Ollivier M, Frey S, Parratte S et al. Does impact sport activity influence total hip arthroplasty durability?. Clin Orthop Relat Res 2012; 470: 3060-3066
  • 129 Bennett D, Humphreys L, OʼBrien S et al. Activity levels and polyethylene wear of patients 10 years post hip replacement. Clin Biomech (Bristol, Avon) 2008; 23: 571-576
  • 130 Smith AJ, Dieppe P, Howard PW et al. Failure rates of metal-on-metal hip resurfacings: analysis of data from the National Joint Registry for England and Wales. Lancet 2012; 380: 1759-1766
  • 131 Wyles CC, Jimenez-Almonte JH, Murad MH et al. There are no differences in short- to mid-term survivorship among total hip-bearing surface options: a network meta-analysis. Clin Orthop Relat Res 2015; 473: 2031-2041