Semin Reprod Med 2011; 29(3): 246-256
DOI: 10.1055/s-0031-1275523
© Thieme Medical Publishers

Permanent Implications of Intrauterine Growth Restriction on Cholesterol Homeostasis

Gurjeev Sohi1 , 2 , 3 , 4 , Andrew Revesz2 , 3 , 4 , Daniel B. Hardy1 , 2 , 3 , 4
  • 1The Department of Physiology & Pharmacology, The University of Western Ontario, London, Ontario, Canada
  • 2The Department of Obstetrics & Gynecology, The University of Western Ontario, London, Ontario, Canada
  • 3The Children's Health Research Institute, London, Ontario, Canada
  • 4The Lawson Health Research Institute, London, Ontario, Canada
Further Information

Publication History

Publication Date:
27 June 2011 (online)

ABSTRACT

Susceptibility to disease begins during fetal life, and adverse events in utero are a critical factor in determining quality of life and overall health. In fact, up to 50% of metabolic syndrome diseases can be attributed to an adverse in utero environment. However, the mechanisms linking impaired fetal development to augmented cholesterol, an important clinical risk factor characterizing the metabolic syndrome and cardiovascular disease, remain elusive. This review discusses the latest research in the fetal programming of cholesterol homeostasis from both clinical studies and animal models. It also underscores the role of the placenta as an important mediator in cholesterol homeostasis during pregnancy and uncovers some of the molecular mechanisms underlying how the homeostatic mechanisms in liver may be impaired in fetal and postnatal life due to undernutrition and/or hypoxia.

REFERENCES

  • 1 Lamarche B, Lemieux S, Dagenais G R, Després J P. Visceral obesity and the risk of ischaemic heart disease: insights from the Québec Cardiovascular Study.  Growth Horm IGF Res. 1998;  8 (Suppl B) 1-8
  • 2 van den Hooven C, Ploemacher J, Godwin M. Metabolic syndrome in a family practice population: prevalence and clinical characteristics.  Can Fam Physician. 2006;  52 982-983
  • 3 Mathieu P, Pibarot P, Després J P. Metabolic syndrome: the danger signal in atherosclerosis.  Vasc Health Risk Manag. 2006;  2 (3) 285-302
  • 4 Wilson P W, D'Agostino R B, Levy D, Belanger A M, Silbershatz H, Kannel W B. Prediction of coronary heart disease using risk factor categories.  Circulation. 1998;  97 (18) 1837-1847
  • 5 Law M R, Wald N J, Rudnicka A R. Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis.  BMJ. 2003;  326 (7404) 1423
  • 6 Lloyd-Jones D, Adams R J, Brown T M WRITING GROUP MEMBERS et al. Heart disease and stroke statistics—2010 update: a report from the American Heart Association.  Circulation. 2010;  121 (7) e46-e215
  • 7 Yusuf S, Reddy S, Ounpuu S, Anand S. Global burden of cardiovascular diseases: part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization.  Circulation. 2001;  104 (22) 2746-2753
  • 8 Yusuf S, Reddy S, Ounpuu S, Anand S. Global burden of cardiovascular diseases. Part II: variations in cardiovascular disease by specific ethnic groups and geographic regions and prevention strategies.  Circulation. 2001;  104 (23) 2855-2864
  • 9 Schocken D D, Benjamin E J, Fonarow G C American Heart Association Council on Epidemiology and Prevention et al. Prevention of heart failure: a scientific statement from the American Heart Association Councils on Epidemiology and Prevention, Clinical Cardiology, Cardiovascular Nursing, and High Blood Pressure Research; Quality of Care and Outcomes Research Interdisciplinary Working Group; and Functional Genomics and Translational Biology Interdisciplinary Working Group.  Circulation. 2008;  117 (19) 2544-2565
  • 10 Barker D J. The fetal and infant origins of adult disease.  BMJ. 1990;  301 (6761) 1111
  • 11 Barker D J, Osmond C, Law C M. The intrauterine and early postnatal origins of cardiovascular disease and chronic bronchitis.  J Epidemiol Community Health. 1989;  43 (3) 237-240
  • 12 Weight in infancy and death from ischaemic heart disease.  Lancet. 1989;  2 (8675) 1335
  • 13 Jaquet D, Gaboriau A, Czernichow P, Levy-Marchal C. Insulin resistance early in adulthood in subjects born with intrauterine growth retardation.  J Clin Endocrinol Metab. 2000;  85 (4) 1401-1406
  • 14 Ross M G, Beall M H. Adult sequelae of intrauterine growth restriction.  Semin Perinatol. 2008;  32 (3) 213-218
  • 15 Canadian Institute for Health Information .Giving birth in Canada: a regional profile. 2004. http://Available at: www.cihi.ca
  • 16 Chiarelli F, di Ricco L, Mohn A, De Martino M, Verrotti A. Insulin resistance in short children with intrauterine growth retardation.  Acta Paediatr Suppl. 1999;  88 (428) 62-65
  • 17 Karlberg J P, Albertsson-Wikland K, Kwan E Y, Lam B C, Low L C. The timing of early postnatal catch-up growth in normal, full-term infants born short for gestational age.  Horm Res. 1997;  48 (Suppl 1) 17-24
  • 18 Kramer M S. Determinants of low birth weight: methodological assessment and meta-analysis.  Bull World Health Organ. 1987;  65 (5) 663-737
  • 19 Napoli C, D'Armiento F P, Mancini F P et al.. Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions.  J Clin Invest. 1997;  100 (11) 2680-2690
  • 20 Wang X, Zuckerman B, Pearson C et al.. Maternal cigarette smoking, metabolic gene polymorphism, and infant birth weight.  JAMA. 2002;  287 (2) 195-202
  • 21 Walker B R, McConnachie A, Noon J P, Webb D J, Watt G C. Contribution of parental blood pressures to association between low birth weight and adult high blood pressure: cross sectional study.  BMJ. 1998;  316 (7134) 834-837
  • 22 Gillman M W. Epidemiological challenges in studying the fetal origins of adult chronic disease.  Int J Epidemiol. 2002;  31 (2) 294-299
  • 23 Huxley R, Neil A, Collins R. Unravelling the fetal origins hypothesis: is there really an inverse association between birthweight and subsequent blood pressure?.  Lancet. 2002;  360 (9334) 659-665
  • 24 Huxley R, Owen C G, Whincup P H, Cook D G, Colman S, Collins R. Birth weight and subsequent cholesterol levels: exploration of the “fetal origins” hypothesis.  JAMA. 2004;  292 (22) 2755-2764
  • 25 Singhal A, Cole T J, Fewtrell M, Lucas A. Breastmilk feeding and lipoprotein profile in adolescents born preterm: follow-up of a prospective randomised study.  Lancet. 2004;  363 (9421) 1571-1578
  • 26 Singhal A, Lucas A. Early origins of cardiovascular disease: is there a unifying hypothesis?.  Lancet. 2004;  363 (9421) 1642-1645
  • 27 Barker D J, Winter P D, Osmond C, Margetts B, Simmonds S J. Weight in infancy and death from ischaemic heart disease.  Lancet. 1989;  2 (8663) 577-580
  • 28 Martyn C N, Barker D J, Osmond C. Mothers' pelvic size, fetal growth, and death from stroke and coronary heart disease in men in the UK.  Lancet. 1996;  348 (9037) 1264-1268
  • 29 Leon D A, Lithell H O, Vâgerö D et al.. Reduced fetal growth rate and increased risk of death from ischaemic heart disease: cohort study of 15 000 Swedish men and women born 1915-29.  BMJ. 1998;  317 (7153) 241-245
  • 30 Forsén T, Eriksson J G, Tuomilehto J, Teramo K, Osmond C, Barker D J. Mother's weight in pregnancy and coronary heart disease in a cohort of Finnish men: follow up study.  BMJ. 1997;  315 (7112) 837-840
  • 31 Nilsson P M, Ostergren P O, Nyberg P, Söderström M, Allebeck P. Low birth weight is associated with elevated systolic blood pressure in adolescence: a prospective study of a birth cohort of 149378 Swedish boys.  J Hypertens. 1997;  15 (12 Pt 2) 1627-1631
  • 32 Curhan G C, Willett W C, Rimm E B, Spiegelman D, Ascherio A L, Stampfer M J. Birth weight and adult hypertension, diabetes mellitus, and obesity in US men.  Circulation. 1996;  94 (12) 3246-3250
  • 33 Curhan G C, Chertow G M, Willett W C et al.. Birth weight and adult hypertension and obesity in women.  Circulation. 1996;  94 (6) 1310-1315
  • 34 Leon D A, Johansson M, Rasmussen F. Gestational age and growth rate of fetal mass are inversely associated with systolic blood pressure in young adults: an epidemiologic study of 165,136 Swedish men aged 18 years.  Am J Epidemiol. 2000;  152 (7) 597-604
  • 35 Leon D A, Koupilova I, Lithell H O et al.. Failure to realise growth potential in utero and adult obesity in relation to blood pressure in 50 year old Swedish men.  BMJ. 1996;  312 (7028) 401-406
  • 36 Gluckman P D, Hanson M A, Morton S M, Pinal C S. Life-long echoes—a critical analysis of the developmental origins of adult disease model.  Biol Neonate. 2005;  87 (2) 127-139
  • 37 Ravelli G P, Stein Z A, Susser M W. Obesity in young men after famine exposure in utero and early infancy.  N Engl J Med. 1976;  295 (7) 349-353
  • 38 Simmons R. Perinatal programming of obesity.  Semin Perinatol. 2008;  32 (5) 371-374
  • 39 Hales C N, Barker D J, Clark P M et al.. Fetal and infant growth and impaired glucose tolerance at age 64.  BMJ. 1991;  303 (6809) 1019-1022
  • 40 McCance D R, Pettitt D J, Hanson R L, Jacobsson L T, Knowler W C, Bennett P H. Birth weight and non-insulin dependent diabetes: thrifty genotype, thrifty phenotype, or surviving small baby genotype?.  BMJ. 1994;  308 (6934) 942-945
  • 41 Forsdahl A. Living conditions in childhood and subsequent development of risk factors for arteriosclerotic heart disease. The cardiovascular survey in Finnmark 1974-75.  J Epidemiol Community Health. 1978;  32 (1) 34-37
  • 42 Forsdahl A. Are poor living conditions in childhood and adolescence an important risk factor for arteriosclerotic heart disease?.  Br J Prev Soc Med. 1977;  31 (2) 91-95
  • 43 Barker D J, Martyn C N, Osmond C, Hales C N, Fall C H. Growth in utero and serum cholesterol concentrations in adult life.  BMJ. 1993;  307 (6918) 1524-1527
  • 44 Laurén L, Järvelin M R, Elliott P EURO-BLCS Study Group et al. Relationship between birthweight and blood lipid concentrations in later life: evidence from the existing literature.  Int J Epidemiol. 2003;  32 (5) 862-876
  • 45 Fall C H, Barker D J, Osmond C, Winter P D, Clark P M, Hales C N. Relation of infant feeding to adult serum cholesterol concentration and death from ischaemic heart disease.  BMJ. 1992;  304 (6830) 801-805
  • 46 Barker D J, Martyn C N, Osmond C, Hales C N, Fall C H. Growth in utero and serum cholesterol concentrations in adult life.  BMJ. 1993;  307 (6918) 1524-1527
  • 47 Fall C H, Osmond C, Barker D J et al.. Fetal and infant growth and cardiovascular risk factors in women.  BMJ. 1995;  310 (6977) 428-432
  • 48 Gustafsson P E, Janlert U, Theorell T, Westerlund H, Hammarström A. Fetal and life course origins of serum lipids in mid-adulthood: results from a prospective cohort study.  BMC Public Health. 2010;  10 484
  • 49 Ong K K, Preece M A, Emmett P M, Ahmed M L, Dunger D B. ALSPAC Study Team . Size at birth and early childhood growth in relation to maternal smoking, parity and infant breast-feeding: longitudinal birth cohort study and analysis.  Pediatr Res. 2002;  52 (6) 863-867
  • 50 Simmons R. Developmental origins of adult metabolic disease: concepts and controversies.  Trends Endocrinol Metab. 2005;  16 (8) 390-394
  • 51 Eriksson J G, Forsén T, Tuomilehto J, Winter P D, Osmond C, Barker D J. Catch-up growth in childhood and death from coronary heart disease: longitudinal study.  BMJ. 1999;  318 (7181) 427-431
  • 52 Yusuf S, Reddy S, Ounpuu S, Anand S. Global burden of cardiovascular diseases. Part II: variations in cardiovascular disease by specific ethnic groups and geographic regions and prevention strategies.  Circulation. 2001;  104 (23) 2855-2864
  • 53 Bo S, Cavallo-Perin P, Scaglione L, Ciccone G, Pagano G. Low birthweight and metabolic abnormalities in twins with increased susceptibility to type 2 diabetes mellitus.  Diabet Med. 2000;  17 (5) 365-370
  • 54 IJzerman R G, Stehouwer C D, Van Weissenbruch M M, De Geus E J, Boomsma D I. Evidence for genetic factors explaining the association between birth weight and low-density lipoprotein cholesterol and possible intrauterine factors influencing the association between birth weight and high-density lipoprotein cholesterol: analysis in twins.  J Clin Endocrinol Metab. 2001;  86 (11) 5479-5484
  • 55 Karsdorp V H, van Vugt J M, van Geijn H P et al.. Clinical significance of absent or reversed end diastolic velocity waveforms in umbilical artery.  Lancet. 1994;  344 (8938) 1664-1668
  • 56 Regnault T R, Friedman J E, Wilkening R B, Anthony R V, Hay Jr W W. Fetoplacental transport and utilization of amino acids in IUGR—a review.  Placenta. 2005;  26 (Suppl A) S52-S62
  • 57 Regnault T R, de Vrijer B, Galan H L, Wilkening R B, Battaglia F C, Meschia G. Development and mechanisms of fetal hypoxia in severe fetal growth restriction.  Placenta. 2007;  28 (7) 714-723
  • 58 Mayhew T M, Ohadike C, Baker P N, Crocker I P, Mitchell C, Ong S S. Stereological investigation of placental morphology in pregnancies complicated by pre-eclampsia with and without intrauterine growth restriction.  Placenta. 2003;  24 (2-3) 219-226
  • 59 Chen C P, Bajoria R, Aplin J D. Decreased vascularization and cell proliferation in placentas of intrauterine growth-restricted fetuses with abnormal umbilical artery flow velocity waveforms.  Am J Obstet Gynecol. 2002;  187 (3) 764-769
  • 60 Godfrey K M. The role of the placenta in fetal programming—a review.  Placenta. 2002;  23 (Suppl A) S20-S27
  • 61 Heasman L, Clarke L, Firth K, Stephenson T, Symonds M E. Influence of restricted maternal nutrition in early to mid gestation on placental and fetal development at term in sheep.  Pediatr Res. 1998;  44 (4) 546-551
  • 62 Belkacemi L, Chen C H, Ross M G, Desai M. Increased placental apoptosis in maternal food restricted gestations: role of the Fas pathway.  Placenta. 2009;  30 (9) 739-751
  • 63 Langley-Evans S C, Gardner D S, Jackson A A. Association of disproportionate growth of fetal rats in late gestation with raised systolic blood pressure in later life.  J Reprod Fertil. 1996;  106 (2) 307-312
  • 64 Napoli C, Witztum J L, Calara F, de Nigris F, Palinski W. Maternal hypercholesterolemia enhances atherogenesis in normocholesterolemic rabbits, which is inhibited by antioxidant or lipid-lowering intervention during pregnancy: an experimental model of atherogenic mechanisms in human fetuses.  Circ Res. 2000;  87 (10) 946-952
  • 65 Burke K T, Colvin P L, Myatt L, Graf G A, Schroeder F, Woollett L A. Transport of maternal cholesterol to the fetus is affected by maternal plasma cholesterol concentrations in the golden Syrian hamster.  J Lipid Res. 2009;  50 (6) 1146-1155
  • 66 Plösch T, van Straten E M, Kuipers F. Cholesterol transport by the placenta: placental liver X receptor activity as a modulator of fetal cholesterol metabolism?.  Placenta. 2007;  28 (7) 604-610
  • 67 Tint G S, Yu H, Shang Q, Xu G, Patel S B. The use of the Dhcr7 knockout mouse to accurately determine the origin of fetal sterols.  J Lipid Res. 2006;  47 (7) 1535-1541
  • 68 Connor W E, Lin D S. Placental transfer of cholesterol-4-14C into rabbit and guinea pig fetus.  J Lipid Res. 1967;  8 (6) 558-564
  • 69 Kayden H J, Dancis J, Money W L. Transfer of lipids across the guinea pig placenta.  Am J Obstet Gynecol. 1969;  104 (4) 564-572
  • 70 Lin D S, Pitkin R M, Connor W E. Placental transfer of cholesterol into the human fetus.  Am J Obstet Gynecol. 1977;  128 (7) 735-739
  • 71 Yoshida S, Wada Y. Transfer of maternal cholesterol to embryo and fetus in pregnant mice.  J Lipid Res. 2005;  46 (10) 2168-2174
  • 72 Plösch T, Gellhaus A, van Straten E M et al.. The liver X receptor (LXR) and its target gene ABCA1 are regulated upon low oxygen in human trophoblast cells: a reason for alterations in preeclampsia?.  Placenta. 2010;  31 (10) 910-918
  • 73 Wójcicka G, Jamroz-Wiśniewska A, Horoszewicz K, Bełtowski J. Liver X receptors (LXRs). Part I: structure, function, regulation of activity, and role in lipid metabolism.  Postepy Hig Med Dosw (Online). 2007;  61 736-759
  • 74 Girard P H, Assan J, Kervran A, Koldovsky O. Late effects of premature weaning to different diets in the rat.  J Nutr. 1978;  108 (11) 1783-1787
  • 75 Kris-Etherton P M, Layman D K, York P V, Frantz Jr I D. The influence of early nutrition on the serum cholesterol of the adult rat.  J Nutr. 1979;  109 (7) 1244-1257
  • 76 Subbiah M T, Yunker R L, Menkhaus A, Poe B. Premature weaning-induced changes of cholesterol metabolism in guinea pigs.  Am J Physiol. 1985;  249 (3 Pt 1) E251-E256
  • 77 Rasmussen K. Is there a causal relationship between iron deficiency or iron-deficiency anemia and weight at birth, length of gestation and perinatal mortality?.  J Nutr. 2001;  131 (2S-2) 590S-601S; discussion 601S–603S
  • 78 Zhang J, Lewis R M, Wang C, Hales N, Byrne C D. Maternal dietary iron restriction modulates hepatic lipid metabolism in the fetuses.  Am J Physiol Regul Integr Comp Physiol. 2005;  288 (1) R104-R111
  • 79 Lewis R M, Petry C J, Ozanne S E, Hales C N. Effects of maternal iron restriction in the rat on blood pressure, glucose tolerance, and serum lipids in the 3-month-old offspring.  Metabolism. 2001;  50 (5) 562-567
  • 80 Petry C J, Ozanne S E, Hales C N. Programming of intermediary metabolism.  Mol Cell Endocrinol. 2001;  185 (1–2) 81-91
  • 81 Crosby W M. Studies in fetal malnutrition.  Am J Dis Child. 1991;  145 (8) 871-876
  • 82 Desai M, Hales C N. Role of fetal and infant growth in programming metabolism in later life.  Biol Rev Camb Philos Soc. 1997;  72 (2) 329-348
  • 83 Snoeck A, Remacle C, Reusens B, Hoet J J. Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas.  Biol Neonate. 1990;  57 (2) 107-118
  • 84 Dahri S, Snoeck A, Reusens-Billen B, Remacle C, Hoet J J. Islet function in offspring of mothers on low-protein diet during gestation.  Diabetes. 1991;  40 (Suppl 2) 115-120
  • 85 Joanette E A, Reusens B, Arany E, Thyssen S, Remacle R C, Hill D J. Low-protein diet during early life causes a reduction in the frequency of cells immunopositive for nestin and CD34 in both pancreatic ducts and islets in the rat.  Endocrinology. 2004;  145 (6) 3004-3013
  • 86 Ozanne S E, Wang C L, Coleman N, Smith G D. Altered muscle insulin sensitivity in the male offspring of protein-malnourished rats.  Am J Physiol. 1996;  271 (6 Pt 1) E1128-E1134
  • 87 Guan H, Arany E, van Beek J P et al.. Adipose tissue gene expression profiling reveals distinct molecular pathways that define visceral adiposity in offspring of maternal protein-restricted rats.  Am J Physiol Endocrinol Metab. 2005;  288 (4) E663-E673
  • 88 Burns S P, Desai M, Cohen R D et al.. Gluconeogenesis, glucose handling, and structural changes in livers of the adult offspring of rats partially deprived of protein during pregnancy and lactation.  J Clin Invest. 1997;  100 (7) 1768-1774
  • 89 Ozanne S E, Smith G D, Tikerpae J, Hales C N. Altered regulation of hepatic glucose output in the male offspring of protein-malnourished rat dams.  Am J Physiol. 1996;  270 (4 Pt 1) E559-E564
  • 90 Rees W D, Hay S M, Brown D S, Antipatis C, Palmer R M. Maternal protein deficiency causes hypermethylation of DNA in the livers of rat fetuses.  J Nutr. 2000;  130 (7) 1821-1826
  • 91 Lillycrop K A, Phillips E S, Jackson A A, Hanson M A, Burdge G C. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring.  J Nutr. 2005;  135 (6) 1382-1386
  • 92 Petrik J, Reusens B, Arany E et al.. A low protein diet alters the balance of islet cell replication and apoptosis in the fetal and neonatal rat and is associated with a reduced pancreatic expression of insulin-like growth factor-II.  Endocrinology. 1999;  140 (10) 4861-4873
  • 93 Chamson-Reig A, Thyssen S M, Hill D J, Arany E. Exposure of the pregnant rat to low protein diet causes impaired glucose homeostasis in the young adult offspring by different mechanisms in males and females.  Exp Biol Med (Maywood). 2009;  234 (12) 1425-1436
  • 94 Petry C J, Ozanne S E, Wang C L, Hales C N. Early protein restriction and obesity independently induce hypertension in 1-year-old rats.  Clin Sci (Lond). 1997;  93 (2) 147-152
  • 95 McMullen S, Langley-Evans S C. Maternal low-protein diet in rat pregnancy programs blood pressure through sex-specific mechanisms.  Am J Physiol Regul Integr Comp Physiol. 2005;  288 (1) R85-R90
  • 96 Mathieu P, Pibarot P, Després J P. Metabolic syndrome: the danger signal in atherosclerosis.  Vasc Health Risk Manag. 2006;  2 (3) 285-302
  • 97 Sohi G, Weese K, Revesz A, Arany E, Hardy D. Maternal protein restriction elevates cholesterol in adult rat offspring due to repressive changes in histone modifications at the cholesterol 7α-hydroxylase promoter.  Mol Endocrinol. 2011;  March 3[Epub ahead of print]
  • 98 Lucas A, Baker B A, Desai M, Hales C N. Nutrition in pregnant or lactating rats programs lipid metabolism in the offspring.  Br J Nutr. 1996;  76 (4) 605-612
  • 99 Boujendar S, Reusens B, Merezak S et al.. Taurine supplementation to a low protein diet during foetal and early postnatal life restores a normal proliferation and apoptosis of rat pancreatic islets.  Diabetologia. 2002;  45 (6) 856-866
  • 100 Boujendar S, Arany E, Hill D, Remacle C, Reusens B. Taurine supplementation of a low protein diet fed to rat dams normalizes the vascularization of the fetal endocrine pancreas.  J Nutr. 2003;  133 (9) 2820-2825
  • 101 Xu Y, Williams S J, O'Brien D, Davidge S T. Hypoxia or nutrient restriction during pregnancy in rats leads to progressive cardiac remodeling and impairs postischemic recovery in adult male offspring.  FASEB J. 2006;  20 (8) 1251-1253
  • 102 Williams S J, Campbell M E, McMillen I C, Davidge S T. Differential effects of maternal hypoxia or nutrient restriction on carotid and femoral vascular function in neonatal rats.  Am J Physiol Regul Integr Comp Physiol. 2005;  288 (2) R360-R367
  • 103 Wang Z, Huang Z, Lu G, Lin L, Ferrari M. Hypoxia during pregnancy in rats leads to early morphological changes of atherosclerosis in adult offspring.  Am J Physiol Heart Circ Physiol. 2009;  296 (5) H1321-H1328
  • 104 Repa J J, Mangelsdorf D J. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis.  Annu Rev Cell Dev Biol. 2000;  16 459-481
  • 105 Mitro N, Mak P A, Vargas L et al.. The nuclear receptor LXR is a glucose sensor.  Nature. 2007;  445 (7124) 219-223
  • 106 van Straten E M, Bloks V W, Huijkman N C et al.. The liver X-receptor gene promoter is hypermethylated in a mouse model of prenatal protein restriction.  Am J Physiol Regul Integr Comp Physiol. 2010;  298 (2) R275-R282
  • 107 Murrell A, Heeson S, Bowden L et al.. An intragenic methylated region in the imprinted Igf2 gene augments transcription.  EMBO Rep. 2001;  2 (12) 1101-1106
  • 108 Jenuwein T, Allis C D. Translating the histone code.  Science. 2001;  293 (5532) 1074-1080
  • 109 Marmorstein R, Trievel R C. Histone modifying enzymes: structures, mechanisms, and specificities.  Biochim Biophys Acta. 2009;  1789 (1) 58-68
  • 110 Burdge G C, Hanson M A, Slater-Jefferies J L, Lillycrop K A. Epigenetic regulation of transcription: a mechanism for inducing variations in phenotype (fetal programming) by differences in nutrition during early life?.  Br J Nutr. 2007;  97 (6) 1036-1046
  • 111 Khorram O, Han G, Bagherpour R et al.. Effect of maternal undernutrition on vascular expression of micro and messenger RNA in newborn and aging offspring.  Am J Physiol Regul Integr Comp Physiol. 2010;  298 (5) R1366-R1374
  • 112 Xu C, Liu S, Fu H et al.. MicroRNA-193b regulates proliferation, migration and invasion in human hepatocellular carcinoma cells.  Eur J Cancer. 2010;  46 (15) 2828-2836
  • 113 Brennecke J, Stark A, Russell R B, Cohen S M. Principles of microRNA-target recognition.  PLoS Biol. 2005;  3 (3) e85
  • 114 Mouillet J F, Chu T, Hubel C A, Nelson D M, Parks W T, Sadovsky Y. The levels of hypoxia-regulated microRNAs in plasma of pregnant women with fetal growth restriction.  Placenta. 2010;  31 (9) 781-784
  • 115 Reckelhoff J F. Gender differences in the regulation of blood pressure.  Hypertension. 2001;  37 (5) 1199-1208
  • 116 Woods L L, Weeks D A, Rasch R. Programming of adult blood pressure by maternal protein restriction: role of nephrogenesis.  Kidney Int. 2004;  65 (4) 1339-1348
  • 117 Ke X, Lei Q, James S J et al.. Uteroplacental insufficiency affects epigenetic determinants of chromatin structure in brains of neonatal and juvenile IUGR rats.  Physiol Genomics. 2006;  25 (1) 16-28
  • 118 Ozaki T, Nishina H, Hanson M A, Poston L. Dietary restriction in pregnant rats causes gender-related hypertension and vascular dysfunction in offspring.  J Physiol. 2001;  530 (Pt 1) 141-152
  • 119 Hewitt K N, Boon W C, Murata Y, Jones M E, Simpson E R. The aromatase knockout mouse presents with a sexually dimorphic disruption to cholesterol homeostasis.  Endocrinology. 2003;  144 (9) 3895-3903
  • 120 Hewitt K N, Pratis K, Jones M E, Simpson E R. Estrogen replacement reverses the hepatic steatosis phenotype in the male aromatase knockout mouse.  Endocrinology. 2004;  145 (4) 1842-1848
  • 121 Li T, Ma H, Chiang J Y. TGFbeta1, TNFalpha, and insulin signaling crosstalk in regulation of the rat cholesterol 7alpha-hydroxylase gene expression.  J Lipid Res. 2008;  49 (9) 1981-1989
  • 122 Leader J E, Wang C, Popov V M, Fu M, Pestell R G. Epigenetics and the estrogen receptor.  Ann N Y Acad Sci. 2006;  1089 73-87

Daniel B HardyPh.D. 

The Department of Physiology & Pharmacology, The University of Western Ontario

London, Ontario, Canada, N6A 5C1

Email: Daniel.Hardy@schulich.uwo.ca

    >