Skip to main content
Log in

Spontaneous recoherence of quantum states after decoherence

  • Quantum Information
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

In this work, we identify the set of time-dependent pure states building the statistical mixture to which a system, initially in a pure state, is driven by the reservoir. This set of time-dependent pure states, composing what we term a pure basis, are those that diagonalize the reduced density operator of the system. Next, we show that the evolution of the pure-basis states reveals an interesting phenomenon as the system, after decoherence, evolves toward the equilibrium: the spontaneous recoherence of quantum states. Around our defined recoherence time, the statistical mixture associated with a special kind of initial states termed even-symmetric, spontaneously undergoes a recoherence process, by which the initial state of the system emerges from the mixture except for its reduced excitation drained into the reservoir. This phenomenon reveals that the reservoir only shuffle the original information carried out by the initial state of the system instead of erasing it. Moreover, as the spontaneously recohered state occurs only for asymptotic time, we also present a protocol to extract it from the mixture through specific projective measurements. The password to retrieve the original information stems is the knowledge of both the initial state itself and the associated pure basis. A definition of the decoherence time of an N-state superposition is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.H. Zurek, Phys. Rev. D 24, 1516 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  2. W.H. Zurek, Phys. Rev. D 26, 1862 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  3. A.O. Caldeira, A.J. Leggett, Physica A 121, 587 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  4. A.O. Caldeira, A.J. Leggett, Ann. Phys. 149, 374 (1983)

  5. A.O. Caldeira, A.J. Leggett, Phys. Rev. A 31, 1059 (1985)

    Article  ADS  Google Scholar 

  6. E. Joos, H.D. Zeh, Physica B: Condens. Matter 59, 223 (1985)

    Article  ADS  Google Scholar 

  7. J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, New Jersey, 1955)

  8. P.W. Shor, Phys. Rev. A 52, R2493 (1995)

    Article  ADS  Google Scholar 

  9. A.M. Steane, Phys. Rev. Lett. 77, 793 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. J.F. Poyatos, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 77, 4728 (1996)

    Article  ADS  Google Scholar 

  11. A.R.R. Carvalho, P. Milman, R.L. de Matos Filho, L. Davidovich, Phys. Rev. Lett. 86, 4988 (2001)

    Article  ADS  Google Scholar 

  12. C.J. Myatt, B.E. King, Q.A. Turchette, C.A. Sackett, D. Kielpinski, W.M. Itano, C. Monroe, D.J. Wineland, Nature 403, 269 (2000)

    Article  ADS  Google Scholar 

  13. F.O. Prado, E.I. Duzzioni, M.H. Moussa, N.G. de Almeida, C.J. Villas-Bôas, Phys. Rev. Lett. 102, 073008 (2009)

    Article  ADS  Google Scholar 

  14. D.A. Lidar, K.B. Whaley, quant-ph/0301032

  15. M.A. de Ponte, S.S. Mizrahi, M.H.Y. Moussa, Ann. Phys. 322, 2077 (2007)

    Article  MATH  ADS  Google Scholar 

  16. M.A. de Ponte, M.C. de Oliveira, M.H.Y. Moussa, Ann. Phys. 317, 72 (2005)

    Article  MATH  ADS  Google Scholar 

  17. M.A. de Ponte, M.C. de Oliveira, M.H.Y. Moussa, Phys. Rev. A 70, 022324 (2004)

    Article  ADS  Google Scholar 

  18. M.A. de Ponte, M.C. de Oliveira, M.H.Y. Moussa, Phys. Rev. A 70, 022325 (2004)

    Article  ADS  Google Scholar 

  19. M.A. de Ponte, S.S. Mizrahi, M.H.Y. Moussa, Phys. Rev. A 76, 032101 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  20. B.R. Mollow, R.J. Glauber, Phys. Rev. 160, 1076 (1967)

    Article  ADS  Google Scholar 

  21. B.R. Mollow, R.J. Glauber, Phys. Rev. 160, 1079 (1967)

    ADS  Google Scholar 

  22. M.H.Y. Moussa, S.S. Mizrahi, A.O. Caldeira, Phys. Lett. A 221, 145 (1996)

    Article  ADS  Google Scholar 

  23. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. L. Davidovich, N. Zagury, M. Brune, J.M. Raimond, S. Haroche, Phys. Rev. A 50, R895 (1994)

    Article  ADS  Google Scholar 

  25. M.H.Y. Moussa, Phys. Rev. A 54, 4661 (1996)

    Article  ADS  Google Scholar 

  26. M.H.Y. Moussa, Phys. Rev. A 55, R3287 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  27. C.J. Villas-Bôas, N.G. de Almeida, M.H.Y. Moussa, Phys. Rev. A 60, 2759 (1999)

    Article  ADS  Google Scholar 

  28. D. Vitali, P. Tombesi, G.J. Milburn, Phys. Rev. Lett. 79, 2442 (1997)

    Article  ADS  Google Scholar 

  29. M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J.M. Raimond, S. Haroche, Phys. Rev. Lett. 77, 4887 (1996)

    Article  ADS  Google Scholar 

  30. M. Brune, S. Haroche, J.M. Raimond, L. Davidovich, N. Zagury, Phys. Rev. A 45, 5193 (1992)

    Article  ADS  Google Scholar 

  31. D.B. Horoshko, S.Ya. Kilin, Phys. Rev. Lett. 78, 840 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H.Y. Moussa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Ponte, M., Cacheffo, A., Villas-Bôas, C. et al. Spontaneous recoherence of quantum states after decoherence. Eur. Phys. J. D 59, 487–496 (2010). https://doi.org/10.1140/epjd/e2010-00176-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-00176-6

Keywords

Navigation