Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

What does it take to make a natural killer?

Key Points

  • Natural killer (NK) cells respond to cytokines, stress signals, microbial products and molecules that are expressed on infected or transformed cells. They are therefore important in the defence against infection and cancer.

  • Although it is generally accepted that NK-cell generation takes place in the bone marrow of adults, the features that make the bone marrow well suited for NK-cell development remain ill-defined.

  • Haematopoietic stem cells (HSCs) successively restrict their potential to generate different blood cell lineages. Recently, commited NK-cell progenitors (NKPs) have been identified.

  • A two-step stromal cell-free culture system has defined the minimal cytokine requirements for NK-cell generation in vitro. In a first phase, HSCs become committed to the NK-cell lineage; and in the second phase, they become killer cells under the influence of interleukin-15.

  • The final maturation of NK cells, including acquisition of expression of MHC-specific inhibitory and activating receptors, depends on contact with stromal cells.

  • A better understanding of NK-cell development could improve the use of these effector cells in diverse pathological states.

Abstract

We know how B and T cells develop, what they 'see' and the receptors they 'see with'. By contrast, and despite an unprecedented increase in the number of receptors and ligands known to regulate the activity of natural killer (NK) cells, we still have many questions regarding how these cells develop. Nevertheless, we are beginning to understand the transcriptional programmes of NK-cell maturation and the role of the effector functions of NK cells in the regulation of immune responses. An improved knowledge of NK-cell development in mice and humans might be useful to harness the power of these natural killers in the clinic to fight autoimmune diseases, infection and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The where and when of NK-cell development.
Figure 2: NK-cell development in vitro.
Figure 3: A working model for NK-cell development.

Similar content being viewed by others

References

  1. Matsunaga, T. & Rahman, A. What brought the adaptive immune system to vertebrates? The jaw hypothesis and the seahorse. Immunol. Rev. 166, 177–186 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Medzhitov, R. & Janeway, C. Jr. Innate immune recognition: mechanisms and pathways. Immunol. Rev. 173, 89–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Colucci, F., Di Santo, J. P. & Leibson, P. J. Natural killer cell activation in mice and men: different triggers for similar weapons? Nature Immunol. 3, 807–813 (2002). A recent update on receptors, ligands and signalling molecules that regulate natural killer (NK)-cell activation.

    Article  CAS  Google Scholar 

  4. Godin, I. & Cumano, A. The hare and the tortoise: an embryonic haematopoietic race. Nature Rev. Immunol. 2, 593–604 (2002). An excellent review of haematopoiesis with special emphasis on the comparison between formation of blood cells in the embryo and in the adult.

    Article  CAS  Google Scholar 

  5. Seaman, W. E., Gindhart, T. D., Greenspan, J. S., Blackman, M. A. & Talal, N. Natural killer cells, bone, and the bone marrow: studies in estrogen-treated mice and in congenitally osteopetrotic (mi/mi) mice. J. Immunol. 122, 2541–2547 (1979).

    CAS  PubMed  Google Scholar 

  6. Kumar, V., Ben-Ezra, J., Bennett, M. & Sonnenfeld, G. Natural killer cells in mice treated with 89strontium: normal target-binding cell numbers but inability to kill even after interferon administration. J. Immunol. 123, 1832–1838 (1979).

    CAS  PubMed  Google Scholar 

  7. Herberman, R. B., Nunn, M. E., Holden, H. T. & Lavrin, D. H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int. J. Cancer 16, 230–239 (1975).

    Article  CAS  PubMed  Google Scholar 

  8. Sirianni, M. C., Businco, L., Seminara, R. & Aiuti, F. Severe combined immunodeficiencies, primary T-cell defects and DiGeorge's syndrome in humans: characterization by monoclonal antibodies and natural killer cell activity. Clin. Immunol. Immunopathol. 28, 361–370 (1983).

    Article  CAS  PubMed  Google Scholar 

  9. Sihvola, M. & Hurme, M. The development of NK cell activity in thymectomized bone marrow chimeras. Immunology 53, 17–22 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ramos, S. B., Garcia, A. B., Viana, S. R., Voltarelli, J. C. & Falcao, R. P. Phenotypic and functional evaluation of natural killer cells in thymectomized children. Clin. Immunol. Immunopathol. 81, 277–281 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Schwarz, R. E. & Hiserodt, J. C. Effects of splenectomy on the development of tumor-specific immunity. J. Surg. Res. 48, 448–453 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Passlick, B. et al. Posttraumatic splenectomy does not influence human peripheral blood mononuclear cell subsets. J. Clin. Lab. Immunol. 34, 157–161 (1991).

    CAS  PubMed  Google Scholar 

  13. Phillips, J. H. et al. Ontogeny of human natural killer cells: fetal NK cells mediate cytolytic functions and express cytoplasmic CD3ε, δ proteins. J. Exp. Med. 175, 1055–1063 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Jaleco, A. C. et al. Fetal liver contains committed NK progentiors, but is not a site for the development of CD34+ cells into T cells. J. Immunol. 159, 694–702 (1997).

    CAS  PubMed  Google Scholar 

  15. Mingari, M. C. et al. In vitro proliferation and cloning of CD3CD16+ cells from human thymus precursors. J. Exp. Med. 174, 21–30 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Rodewald, H. -R. et al. A population of early fetal thymocytes expressing FcγR II/III contains precursors of T lymphocytes and natural killer cells. Cell 69, 139–146 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Ikawa, T., Kawamoto, H., Fujimoto, S. & Katsura, Y. Commitment of common T/natural killer (NK) progenitors to unipotent T and NK progenitors in the murine fetal thymus revealed by a single progenitor assay. J. Exp. Med. 190, 1617–1626 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rosmaraki, E. E. et al. Identification of committed NK cell progenitors in adult murine bone marrow. Eur. J. Immunol. 31, 1900–1909 (2001). The first description of a committed NK-cell precursor in the bone marrow of adult mice. Its human counterpart has not been identified.

    Article  CAS  PubMed  Google Scholar 

  19. Spits, H. et al. Early stages in the development of human T, natural killer and thymic dendritic cells. Immunol. Rev. 165, 75–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Bennett, I. M. et al. Definition of a natural killer NKR-P1A+/CD56/CD16 functionally immature human NK cell subset that differentiates in vitro in the presence of interleukin 12. J. Exp. Med. 184, 1845–1856 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Miller, J. S., Alley, K. A. & McGlave, P. Differentiation of NK cells from human primitive marrow progenitors in a stroma-based long-term culture system: identification of a CD34+7+ NK progenitor. Blood 83, 2594–2601 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Shibuya, A., Nagayoshi, K., Nakamura, K. & Nakauchi, H. Lymphokine requirement for the generation of natural killer cells from CD34+ hematopoietic progenitor cells. Blood 85, 3538–3546 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Mrozek, E., Anderson, P. & Caligiuri, M. A. Role of interleukin-15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitor cells. Blood 87, 2632–2640 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Williams, N. S. et al. Generation of lytic natural killer 1.1+, Ly-49 cells from multipotential murine bone marrow progenitors in a stroma-free culture: definition of cytokine requirements and developmental intermediates. J. Exp. Med. 186, 1609–1614 (1997). Reference 23 and 24 describe the minimal cytokine requirements (stromal-cell free) for generating NK cells in vitro . This process is remarkably similar in humans and mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dokun, A. O. et al. Specific and nonspecific NK cell activation during virus infection. Nature Immunol. 2, 951–956 (2001).

    Article  CAS  Google Scholar 

  26. Salazar-Mather, T. P., Orange, J. S. & Biron, C. A. Early murine cytomegalovirus (MCMV) infection induces liver natural killer (NK) cell inflammation and protection through macrophage inflammatory protein 1α (MIP-1α)-dependent pathways. J. Exp. Med. 187, 1–14 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Smyth, M. J. et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp. Med. 191, 661–668 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I. L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Kondo, M., Weissman, I. L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Igarashi, H., Gregory, S. C., Yokota, T., Sakaguchi, N. & Kincade, P. W. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity 17, 117–130 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Sivori, S. et al. Early expression of triggering receptors and regulatory role of 2B4 in human natural killer cell precursors undergoing in vitro differentiation. Proc. Natl Acad. Sci. USA 99, 4526–4531 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu, H. et al. Flt3 ligand promotes the generation of a distinct CD34+ human natural killer cell progenitor that responds to interleukin-15. Blood 92, 3647–3657 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Lyman, S. D. & Jacobsen, S. E. c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood 91, 1101–1134 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Colucci, F. & Di Santo, J. P. The receptor tyrosine kinase c-kit provides a critical signal for survival, expansion, and maturation of mouse natural killer cells. Blood 95, 984–991 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Waskow, C., Paul, S., Haller, C., Gassmann, M. & Rodewald, H. Viable c-Kit(W/W) mutants reveal pivotal role for c-kit in the maintenance of lymphopoiesis. Immunity 17, 277–288 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Sitnicka, E. et al. Key role of flt3 ligand in regulation of the common lymphoid progenitor but not in maintenance of the hematopoietic stem cell pool. Immunity 17, 463–472 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Mackarehtschian, K. et al. Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity 3, 147–161 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. McKenna, H. J. et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95, 3489–3497 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Spritz, R. A. Molecular basis of human piebaldism. J. Invest. Dermatol. 103, S137–S140 (1994).

    Article  Google Scholar 

  40. Billia, F., Barbara, M., McEwen, J., Trevisan, M. & Iscove, N. N. Resolution of pluripotential intermediates in murine hematopoietic differentiation by global complementary DNA amplification from single cells: confirmation of assignments by expression profiling of cytokine receptor transcripts. Blood 97, 2257–2268 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Warren, L. A. & Rothenberg, E. V. Regulatory coding of lymphoid lineage choice by hematopoietic transcription factors. Curr. Opin. Immunol. 15, 166–175 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Wang, J. H. et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 5, 537–549 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Tucker, S. N., Jessup, H. K., Fujii, H. & Wilson, C. B. Enforced expression of the Ikaros isoform IK5 decreases the numbers of extrathymic intraepithelial lymphocytes and natural killer 1.1+ T cells. Blood 99, 513–519 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Nichogiannopoulou, A., Trevisan, M., Neben, S., Friedrich, C. & Georgopoulos, K. Defects in hemopoietic stem cell activity in Ikaros mutant mice. J. Exp. Med. 190, 1201–1214 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bories, J. C. et al. Increased T-cell apoptosis and terminal B-cell differentiation induced by inactivation of the Ets-1 proto-oncogene. Nature 377, 635–638 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Barton, K. et al. The Ets-1 transcription factor is required for the development of natural killer cells in mice. Immunity 9, 555–563 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Scott, E. W., Simon, M. C., Anastasi, J. & Singh, H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265, 1573–1577 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Colucci, F. et al. Differential requirement for the transcription factor PU.1 in the generation of natural killer cells versus B and T cells. Blood 97, 2625–2632 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. DeKoter, R. P., Lee, H. J. & Singh, H. PU.1 regulates expression of the interleukin-7 receptor in lymphoid progenitors. Immunity 16, 297–309 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Radtke, F. et al. Notch1 deficiency dissociates the intrathymic development of dendritic cells and T cells. J. Exp. Med. 191, 1085–1094 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schaniel, C., Bruno, L., Melchers, F. & Rolink, A. G. Multiple hematopoietic cell lineages develop in vivo from transplanted Pax5-deficient pre-B I-cell clones. Blood 99, 472–478 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Engel, I. & Murre, C. The function of E- and Id proteins in lymphocyte development. Nature Rev. Immunol. 1, 193–199 (2001).

    Article  CAS  Google Scholar 

  53. Heemskerk, M. H. et al. Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix loop helix factor Id3. J. Exp. Med. 186, 1597–1602 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Spits, H., Couwenberg, F., Bakker, A. Q., Weijer, K. & Uittenbogaart, C. H. Id2 and Id3 inhibit development of CD34+ stem cells into predendritic cell (pre-DC)2 but not into pre-DC1. Evidence for a lymphoid origin of pre-DC2. J. Exp. Med. 192, 1775–1784 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yokota, Y. et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397, 702–726 (1999). The first example of a transcription factor that selectively affects NK-cell development.

    Article  CAS  PubMed  Google Scholar 

  56. Ikawa, T., Fujimoto, S., Kawamoto, H., Katsura, Y. & Yokota, Y. Commitment to natural killer cells requires the helix-loop-helix inhibitor Id2. Proc. Natl Acad. Sci. USA 98, 5164–5169 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zamai, L. et al. Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J. Exp. Med. 188, 2375–2380 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Williams, N. S. et al. Differentiation of NK1.1+, Ly49+ NK cells from flt3+ multipotent marrow progenitor cells. J. Immunol. 163, 2648–2656 (1999).

    CAS  PubMed  Google Scholar 

  59. Roth, C., Carlyle, J. R., Takizawa, H. & Raulet, D. H. Clonal acquisition of inhibitory Ly49 receptors on developing NK cells is successively restricted and regulated by stromal class I MHC. Immunity 13, 143–153 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Miller, J. S. & McCullar, V. Human natural killer cells with polyclonal lectin and immunoglobulin-like receptors develop from single hematopoietic stem cells with preferential expression of NKG2A and KIR2DL2/L3/S2. Blood 98, 705–713 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Kim, S. et al. In vivo developmental stages in murine natural killer cell maturation. Nature Immunol. 3, 523–528 (2002).

    Article  CAS  Google Scholar 

  62. Iizuka, K. et al. Requirement for membrane lymphotoxin in natural killer cell development. Proc. Natl Acad. Sci. USA 96, 6336–6340 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wu, Q. et al. Signal via lymphotoxin-β R on bone marrow stromal cells is required for an early checkpoint of NK cell development. J. Immunol. 166, 1684–1689 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Ogasawara, K. et al. Requirement for IRF-1 in the microenvironment supporting development of natural killer cells. Nature 391, 700–703 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Ohteki, T. et al. The transcription factor interferon regulatory factor 1 (IRF-1) is important during the maturation of natural killer 1.1+ T cell receptor-αβ+ (NK1+ T) cells, natural killer cells, and intestinal intraepithelial T cells. J. Exp. Med. 187, 967–972 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Briard, D., Brouty-Boye, D., Azzarone, B. & Jasmin, C. Fibroblasts from human spleen regulate NK cell differentiation from blood CD34+ progenitors via cell surface IL-15. J. Immunol. 168, 4326–4332 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Puel, A., Ziegler, S. F., Buckley, R. H. & Leonard, W. J. Defective IL-7R expression in TB+NK+ severe combined immunodeficiency. Nature Genet. 20, 394–397 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. DiSanto, J. P. et al. Absence of interleukin 2 production in a severe combined immunodeficiency disease syndrome with T cells. J. Exp. Med. 171, 1697–1704 (1991).

    Article  Google Scholar 

  69. Kundig, T. M. et al. Immune responses in interleukin-2-deficient mice. Science 262, 1059–1061 (1993).

    Article  CAS  PubMed  Google Scholar 

  70. Sharfe, N., Dadi, H. K., Shahar, M. & Roifman, C. M. Human immune disorder arising from mutation of the α chain of the interleukin-2 receptor. Proc. Natl Acad. Sci. USA 94, 3168–3171 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kennedy, M. K. et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J. Exp. Med. 191, 771–780 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lodolce, J. P. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9, 669–676 (1998). References 71 and 72 illustrate the essential and non-redundant role of IL-15 and its receptor in mouse NK-cell development. A defect in the human IL-15 receptor results in NK-cell deficiency, as described in reference 46.

    Article  CAS  PubMed  Google Scholar 

  73. Suzuki, H., Duncan, G. S., Takimoto, H. & Mak, T. W. Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the IL-2 receptor β chain. J. Exp. Med. 185, 499–505 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Di Santo, J. P., Müller, W., Guy-Grand, D., Fischer, A. & Rajewsky, K. Lymphoid development in mice with a targeted deletion of the interleukin-2 receptor γ chain. Proc. Natl Acad. Sci. USA 92, 377–381 (1995).

    Article  CAS  Google Scholar 

  75. Noguchi, M. et al. Interleukin-2 receptor γ chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73, 147–157 (1993).

    Article  CAS  PubMed  Google Scholar 

  76. Gilmour, K. C. et al. Defective expression of the interleukin-2/interleukin-15 receptor β subunit leads to a natural killer cell-deficient form of severe combined immunodeficiency. Blood 98, 877–879 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Lodolce, J. P., Burkett, P. R., Boone, D. L., Chien, M. & Ma, A. T cell-independent interleukin 15Rα signals are required for bystander proliferation. J. Exp. Med. 194, 1187–1194 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pereno, R. et al. IL-15/IL-15Rα intracellular trafficking in human cells and protection from apoptosis. Ann. NY Acad. Sci. 876, 236–245 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Dubois, S., Mariner, J., Waldmann, T. A. & Tagaya, Y. IL-15Rα recycles and presents IL-15 in trans to neighboring cells. Immunity 17, 537–547 (2002). This paper proposes a new model for the function of IL-15.

    Article  CAS  PubMed  Google Scholar 

  80. Giri, J. G. et al. Identification and cloning of a novel IL-15 binding protein that is structurally related to the α chain of the IL-2 receptor. EMBO J. 14, 3654–3663 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cerwenka, A. & Lanier, L. L. Ligands for natural killer cell receptors: redundancy or specificity. Immunol. Rev. 181, 158–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Raulet, D. H., Vance, R. E. & McMahon, C. W. Regulation of the natural killer cell receptor repertoire. Annu. Rev. Immunol. 19, 291–330 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Braud, V. M. et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391, 795–799 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Vance, R. E., Kraft, J. R., Altman, J. D., Jensen, P. E. & Raulet, D. H. Mouse CD94/NKG2A is a natural killer cell receptor for the nonclassical major histocompatibility complex (MHC) class I molecule Qa-1(b). J. Exp. Med. 188, 1841–1848 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Smith, H. R. et al. Nonstochastic coexpression of activation receptors on murine natural killer cells. J. Exp. Med. 191, 1341–1354 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ljunggren, H. G. & Karre, K. In search of the 'missing self': MHC molecules and NK cell recognition. Immunol. Today 11, 237–244 (1990).

    Article  CAS  PubMed  Google Scholar 

  87. Lanier, L. L., Le, A. M., Civin, C. I., Loken, M. R. & Phillips, J. H. The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J. Immunol. 136, 4480–4486 (1986).

    CAS  PubMed  Google Scholar 

  88. Smyth, M. J., Hayakawa, Y., Takeda, K. & Yagita, H. New aspects of natural-killer-cell surveillance and therapy of cancer. Nature Rev. Cancer 2, 850–861 (2002). An excellent review on recent advances in our understanding of the role of NK cells in cancer and the possibility of using them in therapy.

    Article  CAS  Google Scholar 

  89. Parrish-Novak, J. et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408, 57–63 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Kasaian, M. T. et al. IL-21 limits NK cell responses and promotes antigen-specific T cell activation: a mediator of the transition from innate to adaptive immunity. Immunity 16, 559–569 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Orange, J. S. et al. Deficient natural killer cell cytotoxicity in patients with IKK-γ/NEMO mutations. J. Clin. Invest. 109, 1501–1509 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhou, J., Zhang, J., Lichtenheld, M. G. & Meadows, G. G. A role for NF-κB activation in perforin expression of NK cells upon IL-2 receptor signaling. J. Immunol. 169, 1319–1325 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Kaisho, T. et al. Impairment of natural killer cytotoxic activity and interferon-γ production in CCAAT/enhancer binding protein γ-deficient mice. J. Exp. Med. 190, 1573–1582 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lohoff, M. et al. Deficiency in the transcription factor interferon regulatory factor (IRF)-2 leads to severely compromised development of natural killer and T helper type 1 cells. J. Exp. Med. 192, 325–336 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ito, A. et al. Inhibitory effect on natural killer activity of microphthalmia transcription factor encoded by the mutant mi allele of mice. Blood 97, 2075–2083 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Lacorazza, H. D. et al. The ETS protein MEF plays a critical role in perforin gene expression and the development of natural killer and NK-T cells. Immunity 17, 437–449 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Cooper, M. A. et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56bright subset. Blood 97, 3146–3151 (2001). This paper provides the first clear evidence that human NK cells can be divided in two distinct subsets on the basis of expression of cell-surface markers and division of labour. Whether this applies to mouse NK cells is not known.

    Article  CAS  PubMed  Google Scholar 

  98. Benlagha, K., Kyin, T., Beavis, A., Teyton, L. & Bendelac, A. A thymic precursor into the NK T cell lineage. Science 296, 553–555 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Loza, M. J. & Perussia, B. Final steps of natural killer cell maturation: a model for type 1–type 2 differentiation? Nature Immunol. 2, 917–924 (2001).

    Article  CAS  Google Scholar 

  100. Loza, M. J., Peters, S. P., Zangrilli, J. G. & Perussia, B. Distinction between IL-13 and IFN-γ natural killer cells and regulation of their pool size by IL-4. Eur. J. Immunol. 32, 413–423 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Peritt, D. et al. Differentiation of human NK cells into NK1 and NK2 subsets. J. Immunol. 161, 5821–5824 (1998).

    CAS  PubMed  Google Scholar 

  102. Hoshino, T., Wiltrout, R. H. & Young, H. A. IL-18 is a potent coinducer of IL-13 in NK and T cells: a new potential role for IL-18 in modulating the immune response. J. Immunol. 162, 5070–5077 (1999).

    CAS  PubMed  Google Scholar 

  103. Lauwerys, B. R., Garot, N., Renauld, J. C. & Houssiau, F. A. Cytokine production and killer activity of NK/T-NK cells derived with IL-2, IL-15, or the combination of IL-12 and IL-18. J. Immunol. 165, 1847–1853 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Ranson, T. et al. IL-15 is an essential mediator of peripheral NK cell homeostasis. Blood (in the press)

  105. Cooper, M. A. et al. In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood 100, 3633–3638 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Frey, M. et al. Differential expression and function of L-selectin on CD56bright and CD56dim natural killer cell subsets. J. Immunol. 161, 400–408 (1998).

    CAS  PubMed  Google Scholar 

  107. Fehniger, T. A. et al. CD56bright natural killer cells are present in human lymph nodes and are activated by T cell derived IL-2: a potential new link between adaptive and innate immunity. Blood 101, 3052–3057 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Moffet-King, A. Natural killer cells and pregnancy. Nature Rev. Immunol. 2, 656–663 (2002).

    Article  CAS  Google Scholar 

  109. Croy, B. A., Chantakru, S., Esadeg, S., Ashkar, A. A. & Wei, Q. Decidual natural killer cells: key regulators of placental development. J. Reprod. Immunol. 57, 151–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Cooper, M. A., Fehniger, T. A. & Caligiuri, M. A. The biology of human natural killer-cell subsets. Trends Immunol. 22, 633–640 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Farag, S. S., Fehniger, T. A., Ruggeri, L., Velardi, A. & Caligiuri, M. A. Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood 100, 1935–1947 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Caligiuri, M. A. et al. Selective modulation of human natural killer cells in vivo after prolonged infusion of low dose recombinant interleukin 2. J. Clin. Invest. 91, 123–132 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fehniger, T. A. et al. Potential mechanisms of human natural killer cell expansion in vivo during low-dose IL-2 therapy. J. Clin. Invest. 106, 117–124 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Clynes, R. A., Towers, T. L., Presta, L. G. & Ravetch, J. V. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nature Med. 6, 443–446 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Meropol, N. J. et al. Evaluation of natural killer cell expansion and activation in vivo with daily subcutaneous low-dose interleukin-2 plus periodic intermediate-dose pulsing. Cancer Immunol. Immunother. 46, 318–326 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Ruggeri, L. et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295, 2097–2100 (2002). In a mismatched transplantation setting, NK cells prevented relapse of acute myeloid leukaemia. Importantly, these alloreactive NK cells did not cause graft-versus-host disease, mediated graft-versus-leukaemia effects and allowed better engraftment of donor cells.

    Article  CAS  PubMed  Google Scholar 

  117. Minagawa, M. et al. Enforced expression of Bcl-2 restores the number of NK cells, but does not rescue the impaired development of NKT cells or intraepithelial lymphocytes, in IL-2/IL-15 receptor β-chain-deficient mice. J. Immunol. 169, 4153–4160 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Piguet, P. F., Grau, G., Irle, C. & Vassalli, P. Administration of recombinant interleukin 2 to mice enhances production of hemopoietic and natural killer cells. Eur. J. Immunol. 16, 1257–1261 (1986).

    Article  CAS  PubMed  Google Scholar 

  119. Nakajima, H. et al. The BCR/ABL transgene causes abnormal NK cell differentiation and can be found in circulating NK cells of advanced phase chronic myelogenous leukemia patients. J. Immunol. 168, 643–650 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Gilliland, D. G. Molecular genetics of human leukemias: new insights into therapy. Semin. Haematol. 39, 6–11 (2002).

    Article  CAS  Google Scholar 

  121. Forbes, L. V. et al. An activating mutation in the transmembrane domain of the granulocyte colony-stimulating factor receptor in patients with acute myeloid leukemia. Oncogene 21, 5981–5989 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Hongyo, T. et al. Specific c-kit mutations in sinonasal natural killer/T-cell lymphoma in China and Japan. Cancer Res. 60, 2345–2347 (2000).

    CAS  PubMed  Google Scholar 

  123. Fehniger, T. A. et al. Fatal leukemia in interleukin 15 transgenic mice follows early expansions in natural killer and memory phenotype CD8+ T cells. J. Exp. Med. 193, 219–231 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Marks-Konczalik, J. et al. IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc. Natl Acad. Sci. USA 97, 11445–11450 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

F.C. and J.P.D. are supported by grants from the Pasteur Institute, Inserm, Association pour la Recherche sur le Cancer, Ligue National Contre le Cancer, and the Fondation pour la Recherche Medicale. M.A.C. is supported in part by grant from the United States National Cancer Institute. We thank C. A. Vosshenrich, B. Becknell and T. Ranson for critical reading of the review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Di Santo.

Related links

Related links

DATABASES

LocusLink

2B4

CCR7

CD2

CD7

CD16

CD34

CD56

CD94

CD161

c-KIT

c-KIT ligand

ETS1

FLT3

FLT3L

GATA3

ID2

ID3

IFN-γ

IL-2

IL-7

IL-8

IL-15

IL-21

IL-2Rβ

IRF1

KIR

L-selectin

LTα

LTβR

Ly49

NEMO

NKG2A

NKR-P1

PU.1

SAP

TRAIL

FURTHER INFORMATION

Michael A. Caligiuri's lab

James P. Di Santo's lab

Glossary

HAEMATOPOIETIC STEM CELLS

(HSCs). These are defined functionally as the one cell that is capable of self-renewing and generating all of the cell types present in the blood. Common myeloid progenitors, common lymphoid progenitors, early lymphoid progenitors and natural-killer-cell precursors are committed progenitors that are derived from HSCs.

NK-CELL PRECURSORS

(NKPs). Cells that can differentiate into natural killer (NK) cells but no other haematopoietic lineage. The expression of the interleukin-2 receptor β-chain by early lymphoid precursors seems to indicate commitment to the NK-cell lineage.

DI GEORGE SYNDROME

A clinical syndrome that is characterized by congenital aplasia or hypoplasia of the thymus and the parathyroid glands, associated with facial and cardiovascular malformations. In 85% of cases, it is caused by a de novo deletion of chromosome 22q11.2

DEVELOPMENTAL INTERMEDIATES

Phenotypically defined cell types that are known to be part of a developmental pathway, and that, on the basis of expression of cell-surface markers or gene-expression profiles, can be placed precisely in that pathway.

COMMITMENT OF HAEMATOPOIETIC STEM CELLS

Lineage commitment is a progressive process that results in loss of the ability to differentiate into multiple lineages. This process is associated with a change in the gene-expression profiles and often correlates with the acquisition of expression of specific cell-surface markers, which are useful for the identification of particular stages of development.

NK-CELL REPERTOIRE

The collection of cell-surface receptors expressed by a population of NK cells. Individual NK cells can express combinations of activating and inhibitory NK-cell receptors; the sum total of different NK-cell clones in the organism defines the 'repertoire'. NK-cell receptors are expressed in a sequential, but stochastic manner during maturation in the bone marrow.

SELF-TOLERANCE

With reference to NK-cell differentiation, the capacity of NK cells to recognize self-MHC molecules (typically classical and non-classical MHC class I gene products) through inhibitory receptors with the resultant downregulation of NK-cell effector functions.

EFFECTOR FUNCTIONS

NK cells were discovered for their ability to spontaneously kill tumour cell lines in vitro. Besides natural cytotoxicity, NK cells can mediate other forms of killing, such as antibody-dependent cellular cytotoxicity. NK cells are also potent producers of interferon-γ, tumour-necrosis factor and granulocyte–macrophage colony-stimulating factor, which prime the adaptive immune system, stimulate myeloid growth and mediate anti-virus and cytotoxic effects. NK cells can also produce chemokines, which attract other cells of the immune system.

CMPS, CLPS AND ELPS

A group of haematopoietic precursors that are committed to either the myeloid (common myeloid progenitor), or the lymphoid (common lymphoid progenitor or early lymphoid progenitor) lineage. CMPs give rise to monocytes, granulocytes, erytrocytes, megakaryocytes and mast cells, whereas CLPs/ELPs give rise to B, T and NK cells.

HOMEOSTASIS

A self-regulating process by which biological systems maintain stability, while adjusting to conditions that are optimal for survival. When applied to lymphocyte subsets, this refers to the mechanisms that regulate cell numbers in the peripheral pool.

MISSING-SELF HYPOTHESIS

Almost 20 years ago, Klas Kärre predicted the existence of inhibitory receptors expressed by NK cells that recognize self-MHC class I molecules87. The lack of expression of the relevant MHC by target cells (missing self) consequently activates NK cells and results in target-cell elimination.

ANTIBODY-DEPENDENT CELLULAR CYTOTOXICITY

(ADCC). Cells that are coated with antibodies are targeted and destroyed by NK cells, macrophages and granulocytes. On NK cells, ADCC is mediated by the Fc receptor complex (CD16).

NKT CELLS

T cells that express antigen receptors of limited variability and that share markers and functions with NK cells. NKT cells are potent producers of cytokines and are heterogeneous in terms of target recognition, anatomical localization and functions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colucci, F., Caligiuri, M. & Di Santo, J. What does it take to make a natural killer?. Nat Rev Immunol 3, 413–425 (2003). https://doi.org/10.1038/nri1088

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1088

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing