Skip to main content
Log in

Effect of vibration on postural control and gait of elderly subjects: a systematic review

  • Review
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background and aim

Gait and balance disorders are common in the elderly populations, and their prevalence increases with age. This systematic review was performed to summarize the current evidence for subthreshold vibration interventions on postural control and gait in elderly.

Method

A review of intervention studies including the following words in the title/abstract: insole, foot and ankle appliances, vibration, noise and elderly related to balance and gait. Databases searched included PubMed, ISI Web of Knowledge, Ovid, Scopus, and Google Scholar. Fifteen articles were selected for final evaluation. The procedure was followed using the preferred reporting items for systematic reviews and meta-analysis method.

Results

There was reduction in center of pressure velocity and displacement especially with eyes closed using vibration in healthy elderly subjects and this effect was greater in elderly faller and patients with more balance deficiency. Vibration programme training increased speed of walking, cadence, step time and length in stroke subjects. The vibratory insoles significantly improved performance on the Timed Up and Go and Functional Reach tests in older people.

Conclusion

Vibration was effective on balance improvement in elderly subject especially elderly with more balance deficiency and it can improve gait parameters in patients with greater baseline variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tinetti ME, Speechley M, Ginter SF (1988) Risk factors for falls among elderly persons living in the community. N Engl J Med 319:1701–1707

    Article  PubMed  CAS  Google Scholar 

  2. Galica AM, Kang HG, Priplata AA et al (2009) Subsensory vibrations to the feet reduce gait variability in elderly fallers. Gait Posture 30:383–387

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tinetti ME, Baker DI, McAvay G et al (1994) A multifactorial intervention to reduce the risk of falling among elderly people living in the community. N Engl J Med 331:821–827

    Article  PubMed  CAS  Google Scholar 

  4. Nelson R, Amin M (1990) Falls in the elderly. Emerg Med Clin North Am 8:309–324

    PubMed  CAS  Google Scholar 

  5. Campbell AJ, Borrie MJ, Spears GF et al (1990) Circumstances and consequences of falls experienced by a community population 70 years and over during a prospective study. Age Ageing 19:136–141

    Article  PubMed  CAS  Google Scholar 

  6. Tinetti ME, De Leon CFM, Doucette JT et al (1994) Fear of falling and fall-related efficacy in relationship to functioning among community-living elders. J Gerontol 49:M140–M147

    Article  PubMed  CAS  Google Scholar 

  7. Collins JJ, Priplata AA, Gravelle DC et al (2003) Noise-enhanced human sensorimotor function. Eng Med Biol Mag IEEE 22:76–83

    Article  Google Scholar 

  8. Dhruv NT, Niemi JB, Harry JD et al (2002) Enhancing tactile sensation in older adults with electrical noise stimulation. Neuroreport 13:597–600

    Article  PubMed  Google Scholar 

  9. Kavounoudias A, Roll R, Roll J-P (1998) The plantar sole is a ‘dynamometric map’ for human balance control. Neuroreport 9:3247–3252

    Article  PubMed  CAS  Google Scholar 

  10. Perry SD, McIlroy WE, Maki BE (2000) The role of plantar cutaneous mechanoreceptors in the control of compensatory stepping reactions evoked by unpredictable, multi-directional perturbation. Brain Res 877:401–406

    Article  PubMed  CAS  Google Scholar 

  11. Maki BE, Perry SD, Norrie RG et al (1999) Effect of facilitation of sensation from plantar foot-surface boundaries on postural stabilization in young and older adults. J Gerontol Ser A Biol Sci Med Sci 54:M281-M7

    Article  Google Scholar 

  12. Vaugoyeau M, Viel S, Amblard B et al (2008) Proprioceptive contribution of postural control as assessed from very slow oscillations of the support in healthy humans. Gait Posture 27:294–302

    Article  PubMed  CAS  Google Scholar 

  13. Sturnieks D, St George R, Lord S (2008) Balance disorders in the elderly. Neurophysiol Clin Neurophysiol 38:467–478

    Article  CAS  Google Scholar 

  14. Perry SD, Santos LC, Patla AE (2001) Contribution of vision and cutaneous sensation to the control of centre of mass (COM) during gait termination. Brain Res 913:27–34

    Article  PubMed  CAS  Google Scholar 

  15. Meyer PF, Oddsson LI, De Luca CJ (2004) The role of plantar cutaneous sensation in unperturbed stance. Exp Brain Res 156:505–512

    Article  PubMed  Google Scholar 

  16. Hopkinson-Woolley JA, Parker MJ (1998) Fractures of the hip: does the type of fall really affect the site of fracture? Injury 29:585–587

    Article  PubMed  CAS  Google Scholar 

  17. Priplata AA, Niemi JB, Harry JD et al (2003) Vibrating insoles and balance control in elderly people. The Lancet 362:1123–1124

    Article  Google Scholar 

  18. Wells C, Ward LM, Chua R et al (2005) Touch noise increases vibrotactile sensitivity in old and young. Psychol Sci 16:313–320

    Article  PubMed  Google Scholar 

  19. Collins J, Imhoff TT, Grigg P (1997) Noise-mediated enhancements and decrements in human tactile sensation. Phys Rev E 56:923

    Article  CAS  Google Scholar 

  20. Hijmans JM, Geertzen JH, Schokker B et al (2007) Development of vibrating insoles. Int J Rehabil Res 30:343–345

    Article  PubMed  Google Scholar 

  21. Wanderley FS, Alburquerque-Sendín F, Parizotto NA et al (2011) Effect of plantar vibration stimuli on the balance of older women: a randomized controlled trial. Arch Phys Med Rehabil 92:199–206

    Article  PubMed  Google Scholar 

  22. Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151:264–269

    Article  PubMed  Google Scholar 

  23. Maher CG, Sherrington C, Herbert RD et al (2003) Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther 83:713–721

    PubMed  Google Scholar 

  24. Law MC, MacDermid J (2002) Evidence-based rehabilitation: a guide to practice. Slack Thorofare, NJ

    Google Scholar 

  25. Priplata AA, Patritti BL, Niemi JB et al (2006) Noise enhanced balance control in patients with diabetes and patients with stroke. Ann Neurol 59:4–12

    Article  PubMed  Google Scholar 

  26. Dettmer M, Pourmoghaddam A, Lee B-C et al (2015) Effects of aging and tactile stochastic resonance on postural performance and postural control in a sensory conflict task. Somatosens Mot Res 32:1–8

    Article  Google Scholar 

  27. Stephen DG, Wilcox BJ, Niemi JB et al (2012) Baseline-dependent effect of noise-enhanced insoles on gait variability in healthy elderly walkers. Gait Posture 36:537–540

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hijmans JM, Geertzen J, Zijlstra W et al (2008) Effects of vibrating insoles on standing balance in diabetic neuropathy. Orthot Interv Improv Standing Balance Somatosens Loss 45:1442–1450

    Google Scholar 

  29. Lee S-W, Cho K-H, Lee W-H (2013) Effect of a local vibration stimulus training programme on postural sway and gait in chronic stroke patients: a randomized controlled trial. Clin Rehabil 27:921–931

    Article  PubMed  Google Scholar 

  30. Lipsitz LA, Lough M, Niemi J et al (2015) A shoe insole delivering subsensory vibratory noise improves balance and gait in healthy elderly people. Arch Phys Med Rehabil 96:432–439

    Article  PubMed  Google Scholar 

  31. Wei Q, Liu D-H, Wang K-H et al (2012) Multivariate multiscale entropy applied to center of pressure signals analysis: an effect of vibration stimulation of shoes. Entropy 14:2157–2172

    Article  Google Scholar 

  32. Wang C-C, Yang W-H (2012) Using detrended fluctuation analysis (DFA) to analyze whether vibratory insoles enhance balance stability for elderly fallers. Arch Gerontol Geriatr 55:673–676

    Article  PubMed  Google Scholar 

  33. Novak P, Novak V (2006) Effect of step-synchronized vibration stimulation of soles on gait in Parkinson’s disease: a pilot study. J Neuroeng Rehabil 3:9

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yu M, Piao Y-J, Kim S-H et al (2010) Effects of tendon vibration during one-legged and two-legged stance in elderly individuals. Int J Precis Eng Manuf 11:969–977

    Article  Google Scholar 

  35. Costa M, Priplata A, Lipsitz L et al (2007) Noise and poise: enhancement of postural complexity in the elderly with a stochastic-resonance-based therapy. EPL (Europhy Lett) 77:68008

    Article  CAS  Google Scholar 

  36. Priplata A, Niemi J, Salen M et al (2002) Noise-enhanced human balance control. Phys Rev Lett 89:238101

    Article  PubMed  CAS  Google Scholar 

  37. Novak P, Novak V (2006) Effect of step-synchronized vibration stimulation of soles on gait in Parkinson's disease: a pilot study. J NeuroEng Rehabil 3:9–16

    Article  PubMed  PubMed Central  Google Scholar 

  38. Morita T (2003) Miniature piezoelectric motors. Sens Actuators A 103:291–300

    Article  CAS  Google Scholar 

  39. Aboutorabi A, Bahramizadeh M, Arazpour M et al (2016) A systematic review of the effect of foot orthoses and shoe characteristics on balance in healthy older subjects. Prosthet Orthot Int 40:170–181

    Article  PubMed  Google Scholar 

  40. Kennedy PM, Inglis JT (2002) Distribution and behaviour of glabrous cutaneous receptors in the human foot sole. J Physiol 538:995–1002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Thompson C, Bélanger M, Fung J (2007) Effects of bilateral Achilles tendon vibration on postural orientation and balance during standing. Clin Neurophysiol 118:2456–2467

    Article  PubMed  Google Scholar 

  42. Ceyte H, Cian C, Zory R et al (2007) Effect of Achilles tendon vibration on postural orientation. Neurosci Lett 416:71–75

    Article  PubMed  CAS  Google Scholar 

  43. Richardson JK, Hurvitz EA (1995) Peripheral neuropathy: a true risk factor for falls. J Gerontol Ser A Biol Sci Med Sci 50:M211-M215

    Google Scholar 

  44. Rogan S, Hilfiker R, Schmid S et al (2012) Stochastic resonance whole-body vibration training for chair rising performance on untrained elderly: a pilot study. Arch Gerontol Geriatr 55:468–473

    Article  PubMed  Google Scholar 

  45. Walker C, Brouwer BJ, Culham EG (2000) Use of visual feedback in retraining balance following acute stroke. Phys Ther 80:886–895

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mokhtar Arazpour.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. For this type of study formal consent is not required.

Funding

We thank the University of social welfare and rehabilitation sciences for financial support of this research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aboutorabi, A., Arazpour, M., Bahramizadeh, M. et al. Effect of vibration on postural control and gait of elderly subjects: a systematic review. Aging Clin Exp Res 30, 713–726 (2018). https://doi.org/10.1007/s40520-017-0831-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-017-0831-7

Keywords

Navigation