Skip to main content
Log in

Management of Biochemical Recurrence of Prostate Cancer After Curative Treatment: A Focus on Older Patients

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Following a treatment with curative intent, a biochemical recurrence may be diagnosed, often many years after the primary treatment. The consequences of this relapse on survival are very heterogeneous. The expected specific survival at relapse is above 50% at 10 years. Therefore, its management needs to be balanced with the individual life expectancy. The relapse needs to be categorized as either a low- or high-risk category. The latter has to be considered for salvage therapy, provided the individual life expectancy is long enough. It is evaluated through an initial geriatric assessment, starting with the G8 score as well as the mini-Cog. A comprehensive geriatric assessment might be needed based on the G8 score. Patients will then be categorized as either fit, vulnerable, or frail. If a local salvage therapy is considered, the relapse localization might be of interest in some situations. Available salvage therapies in senior adults have nothing special compared to salvage of younger men, except for aggressive local therapy, which might be less well tolerated. The key objective in managing a biochemical recurrence in senior adults is to find the right balance between under- and over-treatment in a shared decision process. In many frail and vulnerable men, a clinically oriented watchful waiting should be preferred, while fit men with an aggressive relapse and a significant life expectancy need an active therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Prostate Cancer : Statistics 2020. Cancer. 2020;

  2. Jain MA, Sapra A. Prostate Cancer Screening. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 [cité 3 avr 2022]. Disponible sur: http://www.ncbi.nlm.nih.gov/books/NBK556081/. Accessed 2 May 2022.

  3. Boyle HJ, Alibhai S, Decoster L, Efstathiou E, Fizazi K, Mottet N, et al. Updated recommendations of the International Society of Geriatric Oncology on prostate cancer management in older patients. EurJ Cancer. 2019;116:116–36.

    Article  CAS  Google Scholar 

  4. Bechis SK, Carroll PR, Cooperberg MR. Impact of Age at Diagnosis on Prostate Cancer Treatment and Survival. J Clin Oncol. 2011;29(2):235–41.

    Article  PubMed  Google Scholar 

  5. Rider JR, Sandin F, Andrén O, Wiklund P, Hugosson J, Stattin P. Long-term outcomes among noncuratively treated men according to prostate cancer risk category in a nationwide, population-based study. Eur Urol. 2013;63(1):88–96.

    Article  PubMed  Google Scholar 

  6. Scosyrev E, Messing EM, Mohile S, Golijanin D, Wu G. Prostate cancer in the elderly. Cancer. 2012;118(12):3062–70.

    Article  PubMed  Google Scholar 

  7. Hall WH, Jani AB, Ryu JK, Narayan S, Vijayakumar S. The impact of age and comorbidity on survival outcomes and treatment patterns in prostate cancer. Prostate Cancer Prostatic Dis. 2005;8(1):22–30.

    Article  CAS  PubMed  Google Scholar 

  8. Cho H, Klabunde CN, Yabroff KR, Wang Z, Meekins A, Lansdorp-Vogelaar I, et al. Comorbidity-adjusted life expectancy: a new tool to inform recommendations for optimal screening strategies. Ann Intern Med. 2013;159(10):667–76.

    Article  PubMed  Google Scholar 

  9. Mottet N, van den Bergh RCN, Briers E, Van den Broeck T, Cumberbatch MG, De Santis M, et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer—2022 Update. Eur Urol. 2022;79(2):243–62.

    Article  CAS  Google Scholar 

  10. Ray ME, Thames HD, Levy LB, Horwitz EM, Kupelian PA, Martinez AA, et al. PSA nadir predicts biochemical and distant failures after external beam radiotherapy for prostate cancer: a multi-institutional analysis. Int J Radiat Oncol Biol Phys. 2006;64(4):1140–50.

    Article  PubMed  Google Scholar 

  11. Van den Broeck T, van den Bergh RCN, Briers E, Cornford P, Cumberbatch M, Tilki D, et al. Biochemical recurrence in prostate cancer: the European Association of Urology Prostate Cancer Guidelines Panel Recommendations. Eur Urol Focus. 2020;6(2):231–4.

    Article  PubMed  Google Scholar 

  12. Cooperberg MR, Hilton JF, Carroll PR. The CAPRA-S score. Cancer. 2011;117(22):5039–46.

    Article  PubMed  Google Scholar 

  13. Yokomizo A, Murai M, Baba S, Ogawa O, Tsukamoto T, Niwakawa M, et al. Percentage of positive biopsy cores, preoperative prostate-specific antigen (PSA) level, pT and Gleason score as predictors of PSA recurrence after radical prostatectomy: a multi-institutional outcome study in Japan. BJU Int. 2006;98(3):549–53.

    Article  CAS  PubMed  Google Scholar 

  14. Boorjian SA, Thompson RH, Tollefson MK, Rangel LJ, Bergstralh EJ, Blute ML, et al. Long-term risk of clinical progression after biochemical recurrence following radical prostatectomy: the impact of time from surgery to recurrence. Eur Urol. 2011;59(6):893–9.

    Article  PubMed  Google Scholar 

  15. Xie W, Regan MM, Buyse M, Halabi S, Kantoff PW, Sartor O, et al. Metastasis-free survival is a strong surrogate of overall survival in localized prostate cancer. J Clin Oncol. 2017;35(27):3097–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Roach M, Hanks G, Thames H, Schellhammer P, Shipley WU, Sokol GH, et al. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: Recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys. 2006;65(4):965–74.

    Article  PubMed  Google Scholar 

  17. Tilki D, Preisser F, Graefen M, Huland H, Pompe RS. External validation of the European Association of Urology biochemical recurrence risk groups to predict metastasis and mortality after radical prostatectomy in a European Cohort. Eur Urol. 2019;75(6):896–900.

    Article  PubMed  Google Scholar 

  18. Arias E, Heron M, Xu J. United States life tables, 2014. Natl Vital Stat Rep. 2017;66(4):1–64.

    PubMed  Google Scholar 

  19. DuGoff EH, Canudas-Romo V, Buttorff C, Leff B, Anderson GF. Multiple chronic conditions and life expectancy: a life table analysis. Med Care. 2014;52(8):688–94.

    Article  PubMed  Google Scholar 

  20. Soubeyran P, Bellera C, Goyard J, Heitz D, Curé H, Rousselot H, et al. Screening for vulnerability in older cancer patients: the ONCODAGE Prospective Multicenter Cohort Study. PLoS ONE. 2014;9(12):e115060.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kenis C, Decoster L, Van Puyvelde K, De Grève J, Conings G, Milisen K, et al. Performance of two geriatric screening tools in older patients with cancer. J Clin Oncol. 2014;32(1):19–26.

    Article  PubMed  Google Scholar 

  22. Borson S, Scanlan JM, Chen P, Ganguli M. The Mini-Cog as a screen for dementia: validation in a population-based sample. J Am Geriatr Soc. 2003;51(10):1451–4.

    Article  PubMed  Google Scholar 

  23. Linn BS, Linn MW, Gurel L. Cumulative illness rating scale. J Am Geriatr Soc. 1968;16(5):622–6.

    Article  CAS  PubMed  Google Scholar 

  24. Studenski S, Perera S, Patel K, Rosano C, Faulkner K, Inzitari M, et al. Gait Speed and Survival in Older Adults. JAMA. 2011;305(1):50–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD, Walsh PC. Natural history of progression after PSA elevation following radical prostatectomy. JAMA. 1999;281(17):1591–7.

    Article  CAS  PubMed  Google Scholar 

  26. Beresford MJ, Gillatt D, Benson RJ, Ajithkumar T. A systematic review of the role of imaging before salvage radiotherapy for post-prostatectomy biochemical recurrence. Clin Oncol. 2010;22(1):46–55.

    Article  CAS  Google Scholar 

  27. Kane CJ, Amling CL, Johnstone PAS, Pak N, Lance RS, Thrasher JB, et al. Limited value of bone scintigraphy and computed tomography in assessing biochemical failure after radical prostatectomy. Urology. 2003;61(3):607–11.

    Article  PubMed  Google Scholar 

  28. Fanti S, Minozzi S, Castellucci P, Balduzzi S, Herrmann K, Krause BJ, et al. PET/CT with 11C-choline for evaluation of prostate cancer patients with biochemical recurrence: meta-analysis and critical review of available data. Eur J Nucl Med Mol Imaging. 2016;43(1):55–69.

    Article  CAS  PubMed  Google Scholar 

  29. Evangelista L, Zattoni F, Guttilla A, Saladini G, Zattoni F, Colletti PM, et al. Choline PET or PET/CT and biochemical relapse of prostate cancer: a systematic review and meta-analysis. Clin Nuclear Med. 2013;38(5):305–14.

    Article  Google Scholar 

  30. Ceci F, Herrmann K, Castellucci P, Graziani T, Bluemel C, Schiavina R, et al. Impact of 11C-choline PET/CT on clinical decision making in recurrent prostate cancer: results from a retrospective two-centre trial. Eur J Nucl Med Mol Imaging. 2014;41(12):2222–31.

    Article  PubMed  Google Scholar 

  31. Soyka JD, Muster MA, Schmid DT, Seifert B, Schick U, Miralbell R, et al. Clinical impact of 18F-choline PET/CT in patients with recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2012;39(6):936–43.

    Article  CAS  PubMed  Google Scholar 

  32. Nanni C, Zanoni L, Pultrone C, Schiavina R, Brunocilla E, Lodi F, et al. 18F-FACBC (anti1-amino-3-18F-fluorocyclobutane-1-carboxylic acid) versus 11C-choline PET/CT in prostate cancer relapse: results of a prospective trial. Eur J Nucl Med Mol Imaging. 2016;43(9):1601–10.

    Article  CAS  PubMed  Google Scholar 

  33. Ceci F, Castellucci P, Graziani T, Farolfi A, Fonti C, Lodi F, et al. 68Ga-PSMA-11 PET/CT in recurrent prostate cancer: efficacy in different clinical stages of PSA failure after radical therapy. Eur J Nucl Med Mol Imaging. 2019;46(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  34. Morris MJ, Rowe SP, Gorin MA, Saperstein L, Pouliot F, Josephson D, et al. Diagnostic performance of 18F-DCFPyL-PET/CT in men with biochemically recurrent prostate cancer: results from the CONDOR Phase III. Multicenter study. Clin Cancer Res. 2021;27(13):3674–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Caroli P, Sandler I, Matteucci F, De Giorgi U, Uccelli L, Celli M, et al. 68Ga-PSMA PET/CT in patients with recurrent prostate cancer after radical treatment: prospective results in 314 patients. Eur J Nucl Med Mol Imaging. 2018;45(12):2035–44.

    Article  CAS  PubMed  Google Scholar 

  36. Rouvière O, Vitry T, Lyonnet D. Imaging of prostate cancer local recurrences: why and how? Eur Radiol. 2010;20(5):1254–66.

    Article  PubMed  Google Scholar 

  37. Dinis Fernandes C, van Houdt PJ, Heijmink SWTPJ, Walraven I, Keesman R, Smolic M, et al. Quantitative 3T multiparametric MRI of benign and malignant prostatic tissue in patients with and without local recurrent prostate cancer after external-beam radiation therapy. J Magn Reson Imaging. 2019;50(1):269–78.

    Article  PubMed  Google Scholar 

  38. Martino P, Scattoni V, Galosi AB, Consonni P, Trombetta C, Palazzo S, et al. Role of imaging and biopsy to assess local recurrence after definitive treatment for prostate carcinoma (surgery, radiotherapy, cryotherapy, HIFU). World J Urol. 2011;29(5):595.

    Article  PubMed  Google Scholar 

  39. Bartkowiak D, Thamm R, Bottke D, Siegmann A, Böhmer D, Budach V, et al. Prostate-specific antigen after salvage radiotherapy for postprostatectomy biochemical recurrence predicts long-term outcome including overall survival. Acta Oncolog. 2018;57(3):362–7.

    Article  CAS  Google Scholar 

  40. Tendulkar RD, Agrawal S, Gao T, Efstathiou JA, Pisansky TM, Michalski JM, et al. Contemporary update of a multi-institutional predictive nomogram for salvage radiotherapy after radical prostatectomy. JCO. 2016;34(30):3648–54.

    Article  Google Scholar 

  41. Ghadjar P, Hayoz S, Bernhard J, Zwahlen DR, Hoelscher T, Gut P, et al. Dose-intensified versus conventional dose-salvage radiotherapy for biochemically recurrent prostate cancer after prostatectomy: Six-year outcomes of the SAKK 09/10 randomized phase III trial. JCO. 2021;39(6_suppl):194.

    Article  Google Scholar 

  42. Pollack A, Karrison TG, Balogh AG, Gomella LG, Low DA, Bruner DW, et al. The addition of androgen deprivation therapy and pelvic lymph node treatment to prostate bed salvage radiotherapy (NRG Oncology/RTOG 0534 SPPORT): an international, multicentre, randomised phase 3 trial. The Lancet. 2022;399(10338):1886–901.

    Article  CAS  Google Scholar 

  43. Shipley WU, Seiferheld W, Lukka HR, Major PP, Heney NM, Grignon DJ, et al. Radiation with or without antiandrogen therapy in recurrent prostate cancer. N Engl J Med. 2017;376(5):417–28.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Carrie C, Magné N, Burban-Provost P, Sargos P, Latorzeff I, Lagrange J-L, et al. Short-term androgen deprivation therapy combined with radiotherapy as salvage treatment after radical prostatectomy for prostate cancer (GETUG-AFU 16): a 112-month follow-up of a phase 3, randomised trial. Lancet Oncol. 2019;20(12):1740–9.

    Article  CAS  PubMed  Google Scholar 

  45. Carrie C, Hasbini A, de Laroche G, Richaud P, Guerif S, Latorzeff I, et al. Salvage radiotherapy with or without short-term hormone therapy for rising prostate-specific antigen concentration after radical prostatectomy (GETUG-AFU 16): a randomised, multicentre, open-label phase 3 trial. Lancet Oncol. 2016;17(6):747–56.

    Article  CAS  PubMed  Google Scholar 

  46. Detti B, Scoccianti S, Cassani S, Cipressi S, Villari D, Lapini A, et al. Adjuvant and salvage radiotherapy after prostatectomy: outcome analysis of 307 patients with prostate cancer. J Cancer Res Clin Oncol. 2013;139(1):147–57.

    Article  PubMed  Google Scholar 

  47. Cozzarini C, Fiorino C, Da Pozzo LF, Alongi F, Berardi G, Bolognesi A, et al. Clinical factors predicting late severe urinary toxicity after postoperative radiotherapy for prostate carcinoma: a single-institute analysis of 742 patients. Int J Radiat Oncol Biol Phys. 2012;82(1):191–9.

    Article  PubMed  Google Scholar 

  48. Van Dessel LF, Reuvers SHM, Bangma CH, Aluwini S. Salvage radiotherapy after radical prostatectomy: Long-term results of urinary incontinence, toxicity and treatment outcomes. Clin Transl Radiat Oncol. 2018;11:26–32.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bravi CA, Fossati N, Gandaglia G, Suardi N, Mazzone E, Robesti D, et al. Long-term outcomes of salvage lymph node dissection for nodal recurrence of prostate cancer after radical prostatectomy: not as good as previously thought. Eur Urol. 2020;78(5):661–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ramey SJ, Agrawal S, Abramowitz MC, Moghanaki D, Pisansky TM, Efstathiou JA, et al. Multi-institutional evaluation of elective nodal irradiation and/or androgen deprivation therapy with postprostatectomy salvage radiotherapy for prostate cancer. Eur Urol. 2018;74(1):99–106.

    Article  PubMed  Google Scholar 

  51. Amiel T, Würnschimmel C, Heck M, Horn T, Nguyen N, Budäus L, et al. Regional lymph node metastasis on prostate specific membrane antigen positron emission tomography correlates with decreased biochemical recurrence-free and therapy-free survival after radical prostatectomy: a retrospective single-center single-arm observational study. J Urol. 2021;205(6):1663–70.

    Article  PubMed  Google Scholar 

  52. Valle LF, Lehrer EJ, Markovic D, Elashoff D, Levin-Epstein R, Karnes RJ, et al. A systematic review and meta-analysis of local salvage therapies after radiotherapy for prostate cancer (MASTER). Eur Urol. 2021;80(3):280–92.

    Article  PubMed  Google Scholar 

  53. Ginsburg KB, Elshafei A, Yu C, Jones JS, Cher ML. Avoidance of androgen deprivation therapy in radiorecurrent prostate cancer as a clinically meaningful endpoint for salvage cryoablation. Prostate. 2017;77(14):1446–50.

    Article  CAS  PubMed  Google Scholar 

  54. Kovac E, ElShafei A, Tay KJ, Mendez M, Polascik TJ, Jones JS. Five-Year biochemical progression-free survival following salvage whole-gland prostate cryoablation: defining success with nadir prostate-specific antigen. J Endourol. 2016;30(6):624–31.

    Article  PubMed  Google Scholar 

  55. Crook JM, Zhang P, Pisansky TM, Trabulsi EJ, Amin MB, Bice W, et al. A prospective phase 2 trial of transperineal ultrasound-guided brachytherapy for locally recurrent prostate cancer after external beam radiation therapy (NRG Oncology/RTOG-0526). Int J Radiat Oncol Biol Phys. 2019;103(2):335–43.

    Article  PubMed  Google Scholar 

  56. Smith WH, Cesaretti J, Chin PC, Terk M, Stock RG. Salvage low dose rate brachytherapy for prostate cancer recurrence following definitive external beam radiation therapy. Radiother Oncol. 2021;6:42–7.

    Article  CAS  Google Scholar 

  57. Fuller D, Wurzer J, Shirazi R, Bridge S, Law J, Crabtree T, et al. Retreatment for Local Recurrence of Prostatic Carcinoma After Prior Therapeutic Irradiation: Efficacy and Toxicity of HDR-Like SBRT. InT J Radiat Oncol Biol Phys. 2020;106(2):291–9.

    Article  CAS  PubMed  Google Scholar 

  58. Moul JW, Wu H, Sun L, McLEOD DG, Amling C, Donahue T, et al. Early versus delayed hormonal therapy for prostate specific antigen only recurrence of prostate cancer after radical prostatectomy. J Urol. 2004;171(3):1141–7.

    Article  PubMed  Google Scholar 

  59. Siddiqui SA, Boorjian SA, Inman B, Bagniewski S, Bergstralh EJ, Blute ML. Timing of androgen deprivation therapy and its impact on survival after radical prostatectomy: a matched cohort study. J Urol. 2008;179(5):1830–7 (discussion 1837).

    Article  PubMed  Google Scholar 

  60. Garcia-Albeniz X, Chan JM, Paciorek A, Logan RW, Kenfield SA, Cooperberg MR, et al. Immediate versus deferred initiation of androgen deprivation therapy in prostate cancer patients with PSA-only relapse. An observational follow-up study. Eur J Cancer. 2015;51(7):817–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Duchesne GM, Woo HH, Bassett JK, Bowe SJ, D’Este C, Frydenberg M, et al. Timing of androgen-deprivation therapy in patients with prostate cancer with a rising PSA (TROG 03.06 and VCOG PR 01–03 [TOAD]): a randomised, multicentre, non-blinded, phase 3 trial. Lancet Oncol. 2016;17(6):727–37.

    Article  CAS  PubMed  Google Scholar 

  62. van den Bergh RCN, van Casteren NJ, van den Broeck T, Fordyce ER, Gietzmann WKM, Stewart F, et al. Role of Hormonal treatment in prostate cancer patients with nonmetastatic disease recurrence after local curative treatment: a systematic review. Eur Urol. 2016;69(5):802–20.

    Article  PubMed  CAS  Google Scholar 

  63. Crook JM, O’Callaghan CJ, Duncan G, Dearnaley DP, Higano CS, Horwitz EM, et al. Intermittent androgen suppression for rising PSA level after radiotherapy. N Engl J Med. 2012;367(10):895–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Higano C, Shields A, Wood N, Brown J, Tangen C. Bone mineral density in patients with prostate cancer without bone metastases treated with intermittent androgen suppression. Urology. 2004;64(6):1182–6.

    Article  PubMed  Google Scholar 

  65. Abrahamsson P-A. Potential benefits of intermittent androgen suppression therapy in the treatment of prostate cancer: a systematic review of the literature. Eur Urol. 2010;57(1):49–59.

    Article  CAS  PubMed  Google Scholar 

  66. Boukovala M, Spetsieris N, Efstathiou E. Systemic Treatment of Prostate Cancer in Elderly Patients: Current Role and Safety Considerations of Androgen-Targeting Strategies. Drugs Aging [Internet]. 2019. https://doi.org/10.1007/s40266-019-00677-6.

    Article  Google Scholar 

  67. Tsai HK, D’Amico AV, Sadetsky N, Chen M-H, Carroll PR. Androgen deprivation therapy for localized prostate cancer and the risk of cardiovascular mortality. JNCI. 2007;99(20):1516–24.

    Article  PubMed  Google Scholar 

  68. Smith MR, Saad F, Egerdie B, Sieber PR, Tammela TLJ, Ke C, et al. Sarcopenia during androgen-deprivation therapy for prostate cancer. J Clin Oncol. 2012;30(26):3271–6.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Walker LM, Tran S, Robinson JW. Luteinizing hormone–releasing hormone agonists: a quick reference for prevalence rates of potential adverse effects. Clin Genitourin Cancer déc. 2013;11(4):375–84.

    Article  Google Scholar 

  70. Wilding S, Downing A, Wright P, Selby P, Watson E, Wagland R, et al. Cancer-related symptoms, mental well-being, and psychological distress in men diagnosed with prostate cancer treated with androgen deprivation therapy. Qual Life Res. 2019;28(10):2741–51.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Braga-Basaria M, Dobs AS, Muller DC, Carducci MA, John M, Egan J, et al. Metabolic syndrome in men with prostate cancer undergoing long-term androgen-deprivation therapy. JCO. 2006;24(24):3979–83.

    Article  Google Scholar 

  72. Smith MR, Boyce SP, Moyneur E, Duh MS, Raut MK, Brandman J. Risk of clinical fractures after gonadotropin-releasing hormone agonist therapy for prostate cancer. J Urol. 2006;175(1):136–9.

    Article  CAS  PubMed  Google Scholar 

  73. Cree M, Soskolne CL, Belseck E, Hornig J, McElhaney JE, Brant R, et al. Mortality and institutionalization following hip fracture. J Am Geriatr Soc. 2000;48(3):283–8.

    Article  CAS  PubMed  Google Scholar 

  74. O’Farrell S, Garmo H, Holmberg L, Adolfsson J, Stattin P, Van Hemelrijck M. Risk and timing of cardiovascular disease after androgen-deprivation therapy in men with prostate cancer. JCO. 2015;33(11):1243–51.

    Article  CAS  Google Scholar 

  75. Nguyen PL, Chen M-H, Beckman JA, Beard CJ, Martin NE, Choueiri TK, et al. Influence of androgen deprivation therapy on all-cause mortality in men with high-risk prostate cancer and a history of congestive heart failure or myocardial infarction. Int J Radiat Oncol Biol Phys. 2012;82(4):1411–6.

    Article  PubMed  Google Scholar 

  76. Keating NL, O’Malley AJ, Freedland SJ, Smith MR. Does comorbidity influence the risk of myocardial infarction or diabetes during androgen-deprivation therapy for prostate cancer? Eur Urol. 2013;64(1):159–66.

    Article  PubMed  Google Scholar 

  77. D’Amico AV, Denham JW, Crook J, Chen MH, Goldhaber SZ, Lamb DS, et al. Influence of androgen suppression therapy for prostate cancer on the frequency and timing of fatal myocardial infarctions. J Clin Oncol. 2007;25(17):2420–5.

    Article  PubMed  CAS  Google Scholar 

  78. Margel D, Peer A, Ber Y, Liat S-G, Tabachnik T, Sela S, et al. Cardiovascular morbidity in a randomized trial comparing GnRH agonist and GnRH antagonist among patients with advanced prostate cancer and preexisting cardiovascular disease. J Urol. 2019;202(6):1199–208.

    Article  PubMed  Google Scholar 

  79. Meng F, Zhu S, Zhao J, Vados L, Wang L, Zhao Y, et al. Stroke related to androgen deprivation therapy for prostate cancer: a meta-analysis and systematic review. BMC Cancer. 2016;16:180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Nead KT, Gaskin G, Chester C, Swisher-McClure S, Leeper NJ, Shah NH. Association between androgen deprivation therapy and risk of dementia. JAMA Oncol. 2017;3(1):49–55.

    Article  PubMed  Google Scholar 

  81. Steuber T, Jilg C, Tennstedt P, De Bruycker A, Tilki D, Decaestecker K, et al. Standard of care versus metastases-directed therapy for PET-detected nodal oligorecurrent prostate cancer following multimodality treatment: a multi-institutional case-control Study. Eur Urol Focus. 2019;5(6):1007–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lancelot Tremeau.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflicts of interest

L. Tremeau and N. Mottet declare that they have no conflicts of interest that might be relevant to the contents of this manuscript.

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Availability of data and material

No datasets were generated or analyzed during the current study

Code availability

Not applicable

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tremeau, L., Mottet, N. Management of Biochemical Recurrence of Prostate Cancer After Curative Treatment: A Focus on Older Patients. Drugs Aging 39, 685–694 (2022). https://doi.org/10.1007/s40266-022-00973-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40266-022-00973-8

Navigation