Skip to main content
Log in

Bewegungs- und Physiotherapie bei Osteoporose

Movement and physiotherapy for osteoporosis

  • Osteoporose
  • Published:
rheuma plus Aims and scope

Zusammenfassung

In Reaktion auf die Muskelarbeit gegen die Schwerkraft regulieren Osteozyten, Osteoklasten und Osteoblasten während des gesamten Lebens die Formation und Resorption von Knochengewebe. Ein progressives Widerstandstraining für alle großen Muskelgruppen und Aktivitäten mit Belastungen durch das eigene Körpergewicht haben einen positiven Effekt auf die Knochendichte. Derartige regelmäßig durchgeführte Aktivitäten erhöhen die Knochendichte oder bremsen zumindest deren physiologischen Abbau. Übungen mit niedriger Intensität und ohne Körpergewichtsbelastung zeigen keinen Effekt auf die Knochendichte. Eine Bewegungstherapie bei Patienten mit Osteoporose muss dies berücksichtigen. Eine Remobilisierung nach Frakturen muss mit dem Ziel, den Knochendichteverlust durch Inaktivität zu vermeiden, rasch eingeleitet und, falls erforderlich, durch eine Schmerztherapie ergänzt werden. Ziele einer rehabilitativen Bewegungstherapie sind die Erhaltung oder Verbesserung der Gelenkbeweglichkeit und Körperbalance und die Muskelkräftigung zur Vermeidung des Rundrückens und zur Funktionserhaltung von Armen und Beinen. Eine enge Zusammenarbeit der Physiotherapeuten mit den behandelnden Ärzten ist für den Therapieerfolg Voraussetzung. Der Übungsaufbau muss progressiv und an den individuellen Trainingsstatus sowie das Frakturrisiko adaptiert sein. Dynamische Aktivitäten mit Rumpfflexionen erhöhen das Risiko von vertebralen Kompressionsfrakturen. Sportarten mit erhöhter Sturzgefährdung müssen vermieden werden. Eine Unterforderung des Osteoporosepatienten bei körperlichen Aktivitäten ist nicht zielführend.

Abstract

The osteocytes, osteoclasts, and osteoblasts that regulate the lifelong acquisition and loss of bone mass are each responsive to muscular work against gravity. Progressive-resistance exercises for large muscle groups as well as weight-bearing activities have positive effects on bone density. These activities increase bone density or delay physiological bone loss, respectively. Exercises for patients with osteoporosis have to include these principles. After osteoporotic fractures a remobilizing program to prevent bone loss caused by inactivity should be started with patients as soon as possible. In addition, pain therapy should be prescribed, if necessary. The goals of a rehabilitative exercise program are the maintenance or improvement of range of motion, balance, and muscle strength, specifically for back extensors and upper and lower limbs. In accordance with a successful outcome, the cooperation between medical doctors and physiotherapists is quite necessary. The exercise regime should be progressive and targeted to the fitness status and to the fracture risk. Several physical activities that contain spinal flexion exercises increase the risk of vertebral compression fractures. Sports with high risk of falling should be avoided. Without enough challenge the outcome may be unsuccessful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. National Osteoporosis Guideline Group (2016) Osteoporosis—clinical guideline for prevention and treatment, S 5–6

    Google Scholar 

  2. Ekin JA, Sinaki M (1993) Vertebral compression fractures sustained during golfing: report of three cases. Mayo Clin Proc 68:566–570

    Article  CAS  PubMed  Google Scholar 

  3. Sinaki M (2017) Exercise for patients with established osteoporosis. In: Sinaki M, Pfeifer M (Hrsg) Non-pharmacological management of osteoporosis. Springer, Cham, S 75–96

    Chapter  Google Scholar 

  4. SIGN (2015) SIGN 142. Management of osteoporosis and the prevention of fragility fractures, S. 11. www.sign.ac.uk. Zugegriffen: 01.03.2015

    Google Scholar 

  5. National Osteoporosis Guideline Group (2016) Osteoporosis—clinical guideline for prevention and treatment, S 17

    Google Scholar 

  6. SIGN (2015) SIGN 142. Management of osteoporosis and the prevention of fragility fractures. www.sign.ac.uk.

    Google Scholar 

  7. Fiatrone MA, O’Neill EF, Doyle N, Clements KM, Roberts SB et al (1993) The boston FICSI study: the effects of resistance training and nutritional supplementation on physical frailty in the oldest old. J Am Geriatr Soc 41:333–337

    Article  Google Scholar 

  8. Pfeifer M, Sinaki M, Geusens P, Boonen S, Preisinger E et al (2004) Musculoskeletal rehabilitation in osteoporosis: a review. J Bone Miner Res 19:1208–1214

    Article  PubMed  Google Scholar 

  9. Gillespie LD, Robertson MC, Gillespie WJ, Sherrington C, Gates S et al (2012) Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.cd007146.pub3

    Google Scholar 

  10. Sinaki M, Mikkelsen B (1984) Postmenopausal spinal osteoporosis: flexion versus extension exercises. Arch Phys Med Rehabil 65(10):593–596

    CAS  PubMed  Google Scholar 

  11. Panjabi MM (1992) The stabilizing system of the spine. Part 1 Function, dysfunction, adaptation, and enhancement. J Spinal Disord 5:383–389

    Article  CAS  PubMed  Google Scholar 

  12. Wong AYL, Funbashi M, Stanton TR, Kawchuk GN (2013) Do various baseline characteristics of transversus abdominis and lumbar multifidus predict clinical outcomes in nonspecific low back pain? A systematic review. Pain 154(12):2589–2602. https://doi.org/10.1016/j.pain.2013.07.010

    Article  PubMed  Google Scholar 

  13. Ferreira ML, Ferreira PH, Latimer J, Herbert RD, Hodges PW et al (2007) Comparison of general exercise, motor control exercise and spinal manipulative therapy for chronic low back pain: a randomized trial. Pain 131:31–37

    Article  PubMed  Google Scholar 

  14. Preisinger E, Alacamlioglu Y, Pils K, Bosina E, Metka M, Schneider B et al (1996) Exercise therapy for osteoporosis, results of a randomised, controlled trial. Br J Sports Med 30:209–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Malmros B, Mortensen L, Jensen MB, Charles P (1998) Positive effects of physiotherapy on chronic pain and performance in osteoporosis. Osteoporos Int 8:215–221

    Article  CAS  PubMed  Google Scholar 

  16. Byström MG, Rasmussen-Barr E, Grooten JA (2013) Motor control exercises reduces pain and disability in chronic and recurrent low back pain. Spine 38:E350–E358

    Article  PubMed  Google Scholar 

  17. Kurmen F, Sinaki M (2008) Synergy between the rehabilitation of osteoporosis program exercise and pharmacologic agents in the prevention of vertebral compression fractures. Am J Phys Med Rehabil 87(3):9–10

    Google Scholar 

  18. Pfeifer M, Begerow B, Minne HW (2004) Effects of a new spinal orthosis on posture, trunk muscle, strength, and quality of life in women with postmenopausal osteoporosis. Am J Phys Med Rehabil 83:177–186

    Article  PubMed  Google Scholar 

  19. Sinaki M, Pfeifer M, Preisinger E, Itoi E, Rizzoli R et al (2010) The role of exercise in the treatment of osteoporosis. Curr Osteoporos Rep 8:138–144

    Article  PubMed  Google Scholar 

  20. Sinaki M (2017) Management of fractures in osteoporosis: role of rehabilitative measures. In: Sinaki M, Pfeifer M (Hrsg) Non-pharmacological management of osteoporosis. Springer, Cham, S 97–113

    Chapter  Google Scholar 

  21. Qaseem A, Wilt TJ, McLean RM, Forciea MA (2017) Noninvasive treatments for acute, subacute, and chronic low back pain: a clinical practice guideline from the American College of Physicians. Ann Intern Med 166:514–530

    Article  PubMed  Google Scholar 

  22. Zambito A, Bianchini D, Gatti D, Rossini M, Adami S et al (2007) Interferential and horizontal therapies in chronic low back pain due to multiple vertebral fractures: a randomized, double blind, clinical study. Osteoporos Int 18:1541–1545

    Article  CAS  PubMed  Google Scholar 

  23. Preisinger E, Kerschan-Schindl K (2017) Bone and-fall-related fracture risk. In: Sinaki M, Peifer M (Hrsg) Non-Pharmacological Management of Osteoporosis. Springer, Cham, S 181–195

    Chapter  Google Scholar 

  24. Chen J‑H, Liu C, You L, Simmons CA (2010) Boning up on Wolff’s law: mechanical regulation of the cells that make and maintain bone. J Biomech 43:108–118

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Preisinger.

Ethics declarations

Interessenkonflikt

E. Preisinger gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Erstveröffentlichung im Journal für Mineralstoffwechsel & muskuloskelettale Erkrankungen 2018. https://doi.org/10.1007/s41970-017-0013-2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preisinger, E. Bewegungs- und Physiotherapie bei Osteoporose. rheuma plus 17, 23–27 (2018). https://doi.org/10.1007/s12688-017-0149-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12688-017-0149-8

Schlüsselwörter

Keywords

Navigation