Skip to main content

Advertisement

Log in

Fascial Components of the Myofascial Pain Syndrome

  • Myofascial Pain (R Gerwin, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Myofascial pain syndrome (MPS) is described as the muscle, sensory, motor, and autonomic nervous system symptoms caused by stimulation of myofascial trigger points (MTP). The participation of fascia in this syndrome has often been neglected. Several manual and physical approaches have been proposed to improve myofascial function after traumatic injuries, but the processes that induce pathological modifications of myofascial tissue after trauma remain unclear. Alterations in collagen fiber composition, in fibroblasts or in extracellular matrix composition have been postulated. We summarize here recent developments in the biology of fascia, and in particular, its associated hyaluronan (HA)-rich matrix that address the issue of MPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Simons DG, Travel JG, Simons LS. Myofascial pain and dysfunction: the trigger point manual. Philadelphia: Lippincott, Williams and Wilkins; 1999.

    Google Scholar 

  2. Mayers TW. Anatomy trains. 1st ed. Oxford, UK: Churchill Livingstone; 2001.

    Google Scholar 

  3. Stecco L. Fascial manipulation. 1st ed. Padua: Piccin; 2004.

    Google Scholar 

  4. Day JA, Stecco C, Stecco A. Application of fascial manipulation technique in chronic shoulder pain‒anatomical basis and clinical implications. J Bodyw Mov Ther. 2009;13:128–35.

    Google Scholar 

  5. Pedrelli A, Stecco C, Day JA. Treating patellar tendinopathy with fascial manipulation. J Bodyw Mov Ther. 2009;13:73–80.

    Google Scholar 

  6. Langevin HM, Fox JR, Koptiuch C, Badger GJ, Greenan-Naumann AC, Bouffard NA, et al. Reduced thoracolumbar fascia shear strain in human chronic low back pain. BMC Musculoskelet Disord. 2011;12:203.

    Google Scholar 

  7. Stedman’s medical dictionary. 26th ed. Baltimore: Williams & Wilkins; 1995.

  8. Stecco C, Pavan PG, Porzionato A, Macchi V, Lancerotto L, Carniel EL, et al. Mechanics of crural fascia: from anatomy to constitutive modeling. Surg Radiol Anat. 2009;31:523–9.

    Google Scholar 

  9. Benetazzo L, Bizzego A, De Caro R, Frigo G, Guidolin D, Stecco C. 3D reconstruction of the crural and thoracolumbar fasciae. Surg Radiol Anat. 2011;33:855–62.

    Article  PubMed  CAS  Google Scholar 

  10. Tesarz J, Hoheisel U, Wiedenhöfer B, Mense S. Sensory innervation of the thoracolumbar fascia in rats and humans. Neuroscience. 2011;194:302–8.

    Google Scholar 

  11. Stilwell Jr DL. Regional variations in the innervation of deep fasciae and aponeuroses. Anat Rec. 1957;127:635–53.

    Article  PubMed  Google Scholar 

  12. Tanaka S, Ito T. Histochemical demonstration of adrenergic fibers in the fascia periosteum and retinaculum. Clin Orthop Relat Res. 1977;126:276–81.

    PubMed  Google Scholar 

  13. Palmieri G, Panu R, Asole A. Macroscopic organization and sensitive innervation of the tendinous intersection and the Lacertus Fibrosus of the Biceps Brachii muscle in the ass end of a horse. Arch Anat Histol Embryol. 1986;69:73–82.

    PubMed  CAS  Google Scholar 

  14. Yahia L, Rhalmi S, Newman N, Isler M. Sensory innervation of human thoracolumbar fascia. An immunohistochemical study. Acta Orthop Scand. 1992;63:195–7.

    Article  PubMed  CAS  Google Scholar 

  15. Sanchis-Alfonso V, Roselló-Sastre E. Immunohistochemical analysis for neural markers of the lateral retinaculum in patients with isolated symptomatic patellofemoral malalignment. A neuroanatomic basis for anterior knee pain in the active young patient. Am J Sports Med. 2000;28:725–31.

    PubMed  CAS  Google Scholar 

  16. Stecco C, Gagey O, Belloni A, Pozzuoli A, Porzionato A, Macchi V, et al. Anatomy of the deep fascia of the upper limb. Second part: study of innervation. Morphologie. 2007;91:38–43.

    Article  PubMed  CAS  Google Scholar 

  17. Corey SM, Vizzard MA, Badger GJ, Langevin HM. Sensory innervation of the nonspecialized connective tissues in the low back of the rat. Cells Tissues Organs. 2011;194:521–30.

    Google Scholar 

  18. Testut L, Jacob O. Trattato di anatomia topografica. Firenze: UTE. 1987.

  19. Chiarugi G, Bucciante L. Istituzioni di Anatomia dell'uomo. Padova: Vallardi-Piccin; 1975.

    Google Scholar 

  20. Platzer W. Apparato locomotore. Milano: Ambrosiana; 1979.

    Google Scholar 

  21. Huijing PA, Baan GC. Myofascial force transmission causes interaction between adjacent muscles and connective tissue: effects of blunt dissection and compartmental fasciotomy on length force characteristics of rat extensor digitorum longus muscle. Arch Physiol Biochem. 2001;109:97–109.

    Article  PubMed  CAS  Google Scholar 

  22. Standring L. Single referrals for inpatient and community rehabilitation. Nurs Times. 2005;101:34–6.

    PubMed  Google Scholar 

  23. Moore KL, Dalley AF, Agur AMR. Clinically oriented anatomy. 5th ed. Lippincott, Williams & Wilkins; 2006.

  24. Stecco A, Masiero S, Macchi V, Stecco C, Porzionato A, De Caro R. The pectoral fascia: anatomical and histological study. J Bodyw Mov Ther. 2009;13:255–61.

    Google Scholar 

  25. Stecco C, Macchi V, Porzionato A, Morra A, Parenti A, Stecco A, et al. The ankle retinacula: morphological evidence of the proprioceptive role of the fascial system. Cells Tissues Organs. 2010;192:200–10.

    Article  PubMed  Google Scholar 

  26. Stecco A, Gilliar W, Hill R, Fullerton B, Stecco C. The anatomical and functional relation between gluteus maximus and fascia lata. J Bodyw Mov Ther. 2013 (in press).

  27. Toumi H, Higashiyama I, Suzuki D, Kumai T, Bydder G, McGonagle D, et al. Regional variations in human patellar trabecular architecture and the structure of the proximal patellar tendon enthesis. J Anat. 2006;208:47–57.

    Article  PubMed  CAS  Google Scholar 

  28. Wood JF. Structure and function as seen in the foot. London: Baillière, Tindall and Cox; 1944.

    Google Scholar 

  29. Snow SW, Bohne WH, DiCarlo E, Chang VK. Anatomy of the Achilles tendon and plantar fascia in relation to the calcaneus in various age groups. Foot Ankle Int. 1995;16:418–21.

    Article  PubMed  CAS  Google Scholar 

  30. Milz S, Rufai A, Buettner A, Putz R, Ralphs JR, Benjamin M. Three-dimensional reconstructions of the Achilles tendon insertion in man. J Anat. 2002;200:145–52.

    Article  PubMed  CAS  Google Scholar 

  31. Benjamin M. The fascia of the limbs and back--a review. J Anat. 2009;214: 1–18. Review.

    Google Scholar 

  32. Stecco C, Gagey O, Macchi V, Porzionato A, De Caro R, Aldegheri R, et al. Tendinous muscular insertions onto the deep fascia of the upper limb. First part: anatomical study. Morphologie. 2007;91:29–37.

    Article  PubMed  CAS  Google Scholar 

  33. Gerlach UJ, Lierse W. Functional construction of the superficial and deep fascia system of the lower limb in man. Acta Anat. 1990;139:11–25.

    Article  PubMed  CAS  Google Scholar 

  34. Beninghoff G. Trattato di anatomia umana. Padova: Piccin; 1972.

    Google Scholar 

  35. Purslow PP. Muscle fascia and force transmission. J Bodyw Mov Ther. 2010;14: 411–7. Review.

    Google Scholar 

  36. Trotter JA, Purslow PP. Functional morphology of the endomysium in series fibered muscles. J Morphol. 1992;212:109–22.

    Article  PubMed  CAS  Google Scholar 

  37. Passerieux E, Rossignol R, Chopard A, Carnino A, Marini JF, Letellier T, et al. Structural organization of the perimysium in bovine skeletal muscle: junctional plates and associated intracellular subdomains. J Struct Biol. 2006;154:206–16.

    Article  PubMed  CAS  Google Scholar 

  38. Purslow PP. Strain-induced reorientation of an intramuscular connective tissue network: implications for passive muscle elasticity. J Biomech. 1989;22:21–31.

    Article  PubMed  CAS  Google Scholar 

  39. McCombe D, Brown T, Slavin J, Morrison WA. The histochemical structure of the deep fascia and its structural response to surgery. J Hand Surg Br. 2001;26:89–97.

    Article  PubMed  CAS  Google Scholar 

  40. Gao Y, Kostrominova TY, Faulkner JA, Wineman AS. Age-related changes in the mechanical properties of the epimysium in skeletal muscles of rats. J Biomech. 2008;41:465–9.

    Article  PubMed  Google Scholar 

  41. Boyd-Clark LC, Briggs CA, Galea MP. Muscle spindle distribution, morphology, and density in longus colli and multifidus muscles of the cervical spine. Spine. 2002;27:694–701.

    Article  PubMed  CAS  Google Scholar 

  42. Maier A. Proportions of slow myosin heavy chain-positive fibers in muscle spindles and adjoining extrafusal fascicles, and the positioning of spindles relative to these fascicles. J Morphol. 1999;242:157–65.

    Article  PubMed  CAS  Google Scholar 

  43. Strasmann T, van der Wal JC, Halata Z, Drukker J. Functional topography and ultrastructure of periarticular mechanoreceptors in the lateral elbow region of the rat. Acta Anat. 1990;138:1–14.

    Article  PubMed  CAS  Google Scholar 

  44. Von During M, Andres KH. Topography and fine structure of proprioceptors in the hagfish. Myxine glutinosa. Eur J Morphol. 1994;32:248–56.

    Google Scholar 

  45. Hubbard DR, Berkoff GM. Myofascial trigger points show spontaneous needle EMG activity. Spine. 1993;18:1803–7.

    Article  PubMed  CAS  Google Scholar 

  46. Mense S. [Pathophysiology of low back pain and the transition to the chronic state - experimental data and new concepts]. Schmerz. 2001;15:413–7.

  47. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol. 1995;57:289–300.

    Google Scholar 

  48. Panjabi MM, Cholewicki J, Nibu K, Grauer JN, Babat LB, Dvorakd J. Mechanism of whiplash injury. Clin Biomech. 1998;13:239–49.

    Article  Google Scholar 

  49. Jull GA, Kristjansson E, Dall'Alba P. Impairment in the cervical flexors: a comparison of whiplash and insidious onset neck pain patients. Man Ther. 2004;9:89–94.

    Article  PubMed  CAS  Google Scholar 

  50. Jull GA, O'Leary SP, Falla DL. Clinical assessment of the deep cervical flexor muscle: the creaniocervical flexion test. J Manipulative Physiol Ther. 2008;31:525–33.

    Article  PubMed  Google Scholar 

  51. Jull GA. Deep cervical neck flexor dysfunction in whiplash. J Muscoloskel Pain. 2000;8:143–54.

    Article  Google Scholar 

  52. Elliott M, O'Leary S, Sterling M, Hendrikz J, Pedler A, Jull G. Magnetic resonance imaging findings of fatty infiltrate in the cervical flexors in chronic whiplash. Spine. 2010;35:948–54.

    Article  PubMed  Google Scholar 

  53. Schleip R, Vleeming A, Lehmann-Horn F, Klingler W. Letter to the editor concerning "A hypothesis of chronic back pain: ligament subfailure injuries lead to muscle control dysfunction" (M Panjabi). Eur Spine. 2007;16:1733–5.

    Article  Google Scholar 

  54. Hammer WI. Functional soft-tissue examination and treatment by manual methods. 3° ed. Sudbury, ON: Jones & Barlett Pub; 2007.

    Google Scholar 

  55. Bell J, Holmes M. Model of the dynamics of receptor potential in a mechanoreceptor. Math Biosci. 1992;110:139–74.

    Article  PubMed  CAS  Google Scholar 

  56. Damiano RE. Late onset regression after myopic keratomileusis. J Refract Surg. 1999;15:160.

    PubMed  CAS  Google Scholar 

  57. Loewenstein WR, Skalak R. Mechanical transmission in a Pacinian corpuscle. An analysis and a theory. J Physiol. 1966;182:346–78.

    PubMed  CAS  Google Scholar 

  58. Swerup C, Rydqvist B. A mathematical model of the crustacean stretch receptor neuron. Biomechanics of the receptor muscle, mechanosensitive ion channels, and macrotransducer properties. J Neurophysiol. 1996;76:2211–20.

    PubMed  CAS  Google Scholar 

  59. Husmark I, Ottoson D. The contribution of mechanical factors to the early adaptation of the spindle response. Physiol. 1971;212:577–92.

    CAS  Google Scholar 

  60. Wilkinson RS, Fukami Y. Responses of isolated Golgi tendon organs of cat to sinusoidal stretch. J Neurophysiol. 1983;49:976–88.

    PubMed  CAS  Google Scholar 

  61. Deising S, Weinkauf B, Blunk J, Obreja O, Schmelz M, Rukwied R. NGF-evoked sensitization of muscle fascia nociceptors in humans. Pain. 2012;153:1673–9.

    Google Scholar 

  62. Bednar DA, Orr FW, Simon GT. Observations on the pathomorphology of the thoracolumbar fascia in chronic mechanical back pain. A microscopic study. Spine. 1995;20:1161–4.

    Article  PubMed  CAS  Google Scholar 

  63. Toole BP. Hyaluronan is not just a goo! J Clin Invest. 2000;106:335–6.

    Article  PubMed  CAS  Google Scholar 

  64. Lee JY, Spicer AP. Hyaluronan: a multifunctional, megaDalton, stealth molecule. Curr Opin Cell Biol. 2000;12:581–6.

    Article  PubMed  CAS  Google Scholar 

  65. Feinberg RN, Beebe DC. Hyaluronate in vasculogenesis. Science. 1983;220:1177–9.

    Article  PubMed  CAS  Google Scholar 

  66. Day AJ, Sheehan JK. Hyaluronan: polysaccharide chaos to protein organization. Curr Opin Struct Biol. 2002;11:617–22.

    Article  Google Scholar 

  67. Delmage JM, Powars DR, Jaynes PK, Allerton SE. The selective suppression of immunogenicity by hyaluronic acid. Ann Clin Lab Sci. 1986;16:303–10.

    PubMed  CAS  Google Scholar 

  68. McBride WH, Bard JB. Hyaluronidase-sensitive halos around adherent cells. Their role in blocking lymphocyte-mediated cytolysis. J Exp Med. 1979;149:507–15.

    Article  PubMed  CAS  Google Scholar 

  69. Laurent TC, Fraser JR. Hyaluronan. FASEB J. 1992;6:2397–404.

    PubMed  CAS  Google Scholar 

  70. Fraser JRE, Laurent TC, Laurent UBG. Hyaluronan: its nature, distribution, functions and turnover. J Internal Med. 1997;242:27–33.

    Article  PubMed  CAS  Google Scholar 

  71. Piehl-Aulin K, Laurent C, Engström-Laurent A, Hellström S, Henriksson J. Hyaluronan in human skeletal muscle of lower extremity: concentration, distribution, and effect of exercise. J Appl Physiol. 1991;71:2493–8.

    PubMed  CAS  Google Scholar 

  72. Klein DM, Katzman BM, Mesa JA, Lipton JF, Caligiuri DA. Histology of the extensor retinaculum of the wrist and the ankle. J Hand Surg Am. 1999;24:799–802.

    Article  PubMed  CAS  Google Scholar 

  73. Ellis FD, Seiler 3rd JG, Sewell CW. The second annular pulley: a histologic examination. J Hand Surg Am. 1995;20:632–5.

    Article  PubMed  CAS  Google Scholar 

  74. Katzman BM, Klein DM, Garven TC, Caligiuri DA, Kung J. Comparative histology of the annular and cruciform pulleys. J Hand Surg Br. 1999;24:272–4.

    Article  PubMed  CAS  Google Scholar 

  75. • Stecco C, Stern R, Porzionato A, Macchi V, Masiero S, Stecco A, et al. Hyaluronan within fascia in the etiology of myofascial pain. Surg Radiol Anat. 2011;33:891–6. These authors were the first to correlate the alteration of the viscosity of the hyaluronic acid with the alteration of the deep fascia and the etiology of myofascial pain.

    Article  PubMed  Google Scholar 

  76. Scott JE, Heatley F. Biological properties of hyaluronan in aqueous solution are controlled and sequestered by reversible tertiary structures, defined by NMR spectroscopy. Biomacromolecules. 2002;3:547–53.

    Article  PubMed  CAS  Google Scholar 

  77. Matteini P, Dei L, Carretti E, Volpi N, Goti A, Pini R. Structural behavior of highly concentrated hyaluronan. Biomacromolecules. 2009;10:1516–22.

    Article  PubMed  CAS  Google Scholar 

  78. Juel C, Bangsbo J, Graham T, Saltin B. Lactate and potassium fluxes from human skeletal muscle during and after intense, dynamic, knee extensor exercise. Acta Physiol Scand. 1990;140:147–59.

    Article  PubMed  CAS  Google Scholar 

  79. Nielsen JJ, Mohr M, Klarskov C, Kristensen M, Krustrup P, Juel C, et al. Effects of high-intensity intermittent training on potassium kinetics and performance in human skeletal muscle. J Physiol. 2004;554:857–70.

    Article  PubMed  CAS  Google Scholar 

  80. Juel C, Klarskov C, Nielsen JJ, Krustrup P, Mohr M, Bangsbo J. Effect of high-intensity intermittent training on lactate and H + release from human skeletal muscle. Am J Physiol Endocrinol Metab. 2004;286:E245–51.

    Article  PubMed  CAS  Google Scholar 

  81. Gatej I, Popa M, Rinaudo M. Role of the pH on hyaluronan behavior in aqueous solution. Biomacromolecules. 2005;6:61–7.

    Article  PubMed  CAS  Google Scholar 

  82. Noble PW. Hyaluronan and its catabolic products in tissue injury and repair. Matrix Biol. 2002;21:2529.

    Article  Google Scholar 

  83. Noble PW. Hyaluronan and its catabolic products in tissue injury and repair. Matrix Biol. 2002;21:25–9.

    Article  PubMed  CAS  Google Scholar 

  84. Noble PW, Lake FR, Henson PM, Riches DW. Hyaluronate activation of CD44 induces insulin-like growth factor-1 expression by a tumor necrosis factoralpha- dependent mechanism in murine macrophages. J Clin Invest. 1993;91:2368–77.

    Article  PubMed  CAS  Google Scholar 

  85. Hodge-Dufour J, Noble PW, Horton MR, Bao C, Wysoka M, Burdick MD, et al. Induction of IL-12 and chemokines by hyaluronan requires adhesion-dependent priming of resident but not elicited macrophages. J Immunol. 1997;159:2492–500.

    PubMed  CAS  Google Scholar 

  86. Horton MR, Olman MA, Noble P. Hyaluronan fragments induce plasminogen activator inhibitor-1 and inhibit urokinase activity in mouse alveolar macrophages: a potential mechanism for impaired fibrinolytic activity in acute lung injury. Chest. 1999;116:17S.

    Article  PubMed  CAS  Google Scholar 

  87. McKee CM, Penno MB, Cowman M, Burdick MD, Strieter RM, Bao C, et al. Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages. The role of HA size and CD44. J Clin Invest. 1996;98:2403–13.

    Article  PubMed  CAS  Google Scholar 

  88. McKee CM, Lowenstein CJ, Horton MR, Wu J, Bao C, Chin BY, et al. Hyaluronan fragments induce nitric-oxide synthase in murine macrophages through a nuclear factor NF-kB-dependent mechanism. J Biol Chem. 1997;272:8013–8.

    Article  PubMed  CAS  Google Scholar 

  89. Stern R, Asari R, Sugahara KN. Size- specific fragments of hyaluronan: an information-rich system. Eur J Cell Biol. 2006;85:699–715.

    Article  PubMed  CAS  Google Scholar 

  90. Stecco A, Meneghini A, Stern R, Stecco C, Imamura M. Ultrasonography in the diagnosis of myofascial neck pain. J Rehabil Med. 2013. [In press].

  91. Jensen I, Harms-Ringdahl K. Strategies for prevention and management of musculoskeletal conditions. Neck pain. Best Pract Res Clin Rheumatol. 2007;21:93–108. Review.

    Article  PubMed  Google Scholar 

  92. Shultz SP, Driban JB, Swanik CB. The evaluation of electrodermal properties in the identification of myofascial trigger points. Arch Phys Med Rehabil. 2007;88:780–4.

    Article  PubMed  Google Scholar 

  93. Arokoski JP, Surakka J, Ojala T, Kolari P, Jurvelin JS. Feasibility of the use of a novel soft tissue stiffness meter. Physiol Meas. 2005;26:215–28.

    Article  PubMed  Google Scholar 

  94. Ekman EF, Pope T, Martin DF, Curl WW. Magnetic resonance imaging of iliotibial band syndrome. Am J Sports Med. 1994;22:851–4.

    Article  PubMed  CAS  Google Scholar 

  95. Cardinal E, Chem RK, Beauregard CG, Aubin B, Pelletier M. Plantar fasciitis: sonographic evaluation. Radiology. 1996;201:257–9.

    PubMed  CAS  Google Scholar 

  96. Wall JR, Harkness MA, Crawford A. Ultrasound diagnosis of plantar fasciitis. Foot Ankle. 1993;14:465–70.

    Article  PubMed  CAS  Google Scholar 

  97. Yu JS. Pathologic and post-operative conditions of the plantar fascia: review of MR imaging appearances. Skeletal Radiol. 2000;29:491–501. Review.

    Article  PubMed  CAS  Google Scholar 

  98. Greening J, Lynn B, Leary R, Warren L, O’Higgins P, Hall-Craggs M. The use of ultrasound imaging to demonstrate reduced movement of the median nerve during wrist flexion in patients with non-specific arm pain. J Hand Surg Br. 2001;26:401–6.

    Article  PubMed  CAS  Google Scholar 

  99. Hough AD, Moore AP, Jones MP. Reduced longitudinal excursion of the median nerve in carpal tunnel syndrome. Arch Phys Med Rehabil. 2007;88:569–76.

    Article  PubMed  Google Scholar 

  100. Dilley A, Lynn B, Greening J, DeLeon N. Quantitative in vivo studies of median nerve sliding in response to wrist, elbow, shoulder, and neck movements. Clin Biomech. 2003;18:899–907.

    Article  Google Scholar 

  101. Ellis R, Hing W, Dilley A, McNair P. Reliability of measuring sciatic and tibial nerve movement with diagnostic ultrasound during a neural mobilization technique. Ultrasound Med Biol. 2008;34:1209–16.

    Article  PubMed  Google Scholar 

  102. Dilley A, Greening J, Lynn B, Leary R, Morris V. The use of cross-correlation analysis between high-frequency ultrasound images to measure longitudinal median nerve movement. Ultrasound Med Biol. 2001;27:1211–8.

    Article  PubMed  CAS  Google Scholar 

  103. Lundborg G, Rydevik B. Effects of stretching the tibial nerve of the rabbit. A preliminary study of the intraneural circulation and the barrier function of the perineurium. J Bone Joint Surg Br. 1973;55:390–401.

    PubMed  CAS  Google Scholar 

  104. Abe Y, Doi K, Kawai S. An experimental model of peripheral nerve adhesion in rabbits. J Plastic Surg Br. 2005;58:533–40.

    Article  Google Scholar 

  105. Lundborg G, Dahlin LB. Anatomy, function, and pathophysiology of peripheral nerves and nerve compression. Hand Clin. 1996;12:185–93.

    PubMed  CAS  Google Scholar 

  106. Rydevik B, Lundborg G, Nordborg C. Intraneural tissue reactions induced by internal neurolysis. Scand J Plast Reconstru Surg. 1976;10:3–8.

    CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Stecco Antonio declares that he has no conflict of interest.

Marco Gesi declares that he has no conflict of interest.

Carla Stecco declares that she has no conflict of interest.

Robert Stern declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Stecco.

Additional information

This article is part of the Topical Collection on Myofascial Pain

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stecco, A., Gesi, M., Stecco, C. et al. Fascial Components of the Myofascial Pain Syndrome. Curr Pain Headache Rep 17, 352 (2013). https://doi.org/10.1007/s11916-013-0352-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11916-013-0352-9

Keywords

Navigation