Skip to main content

Advertisement

Log in

Electrolyte and Acid–Base Disturbances in End-Stage Liver Disease: A Physiopathological Approach

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Electrolyte and acid–base disturbances are frequent in patients with end-stage liver disease; the underlying physiopathological mechanisms are often complex and represent a diagnostic and therapeutic challenge to the physician. Usually, these disorders do not develop in compensated cirrhotic patients, but with the onset of the classic complications of cirrhosis such as ascites, renal failure, spontaneous bacterial peritonitis and variceal bleeding, multiple electrolyte, and acid–base disturbances emerge. Hyponatremia parallels ascites formation and is a well-known trigger of hepatic encephalopathy; its management in this particular population poses a risky challenge due to the high susceptibility of cirrhotic patients to osmotic demyelination. Hypokalemia is common in the setting of cirrhosis: multiple potassium wasting mechanisms both inherent to the disease and resulting from its management make these patients particularly susceptible to potassium depletion even in the setting of normokalemia. Acid–base disturbances range from classical respiratory alkalosis to high anion gap metabolic acidosis, almost comprising the full acid–base spectrum. Because most electrolyte and acid–base disturbances are managed in terms of their underlying trigger factors, a systematic physiopathological approach to their diagnosis and treatment is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AG:

Anion gap

AKI:

Acute kidney injury

AQ2:

Aquaporin 2

AVP:

Arginine vasopressin

BP:

Blood pressure

CNI:

Calcineurin inhibitors

CNS:

Central nervous system

DRTA:

Distal renal tubular acidosis

EG:

Ethylene glycol

ENAC:

Epithelial sodium channels

ESLD:

End-stage liver disease

FFP:

Fresh frozen plasma

GFR:

Glomerular filtration rate

HE:

Hepatic encephalopathy

HRS:

Hepatorenal syndrome

NG:

Nasogastric

NH4+ :

Ammonium

NH3:

Ammonia

MELD:

Model for End-Stage Liver Disease

OLT:

Orthotopic liver transplantation

OSD:

Osmotic demyelination syndrome

PBC:

Primary biliary cirrhosis

RAAS:

Renin–angiotensin–aldosterone system

ROMK:

Renal outer medullary potassium channels

RTA:

Renal tubular acidosis

SBP:

Spontaneous bacterial peritonitis

SIAD:

Syndrome of inappropriate antidiuresis

TAL:

Thick ascending limb

TBW:

Total body water

UAG:

Urinary anion gap

VR2:

Vasopressin receptor 2

References

  1. Funk GC, Doberer D, Kneidinger N, Lindner G, Holzinger U, Schneeweiss B. Acid-base disturbances in critically ill patients with cirrhosis. Liver Int. 2007;27:901–909.

    Article  CAS  PubMed  Google Scholar 

  2. Ahya SN, José Soler M, Levitsky J, Batlle D. Acid-base and potassium disorders in liver disease. Semin Nephrol. 2006;26:466–470.

    Article  CAS  PubMed  Google Scholar 

  3. Henriksen JH, Bendtsen F, Møller S. Acid-base disturbance in patients with cirrhosis: relation to hemodynamic dysfunction. Eur J Gastroenterol Hepatol. 2015;27:920–927.

    Article  CAS  PubMed  Google Scholar 

  4. Kim WR, Biggins SW, Kremers WK, et al. Hyponatremia and mortality among patients on the liver-transplant waiting list. N Engl J Med. 2008;359:1018–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gaduputi V, Chandrala C, Abbas N, Tariq H, Chilimuri S, Balar B. Prognostic significance of hypokalemia in hepatic encephalopathy. Hepatogastroenterology. 2014;61:1170–1174.

    Google Scholar 

  6. Funk GC, Doberer D, Osterreicher C, Peck-Radosavljevic M, Schmid M, Schneeweiss B. Equilibrium of acidifying and alkalinizing metabolic acid-base disorders in cirrhosis. Liver Int. 2005;25:505–512.

    Article  CAS  PubMed  Google Scholar 

  7. Guevara M, Baccaro ME, Torre A, et al. Hyponatremia is a risk factor of hepatic encephalopathy in patients with cirrhosis: a prospective study with time-dependent analysis. Am J Gastroenterol. 2009;104:1382–1389.

    Article  PubMed  Google Scholar 

  8. Shafiei MS, Lui S, Rockey DC. Integrin-linked kinase regulates endothelial cell nitric oxide synthase expression in hepatic sinusoidal endothelial cells. Liver Int. 2015;35:1213–1221.

    Article  CAS  PubMed  Google Scholar 

  9. Abraldes JG, Iwakiri Y, Loureiro-Silva M, Haq O, Sessa WC, Groszmann RJ. Mild increases in portal pressure upregulate vascular endothelial growth factor and endothelial nitric oxide synthase in the intestinal microcirculatory bed, leading to a hyperdynamic state. Am J Physiol Gastrointest Liver Physiol. 2006;290:G980–G987.

    Article  CAS  PubMed  Google Scholar 

  10. Martin PY, Ginès P, Schrier RW. Nitric oxide as a mediator of hemodynamic abnormalities and sodium and water retention in cirrhosis. N Engl J Med. 1998;339:533–541.

    Article  CAS  PubMed  Google Scholar 

  11. Kayali Z, Herring J, Baron P, et al. Increased plasma nitric oxide, l-arginine, and arginase-1 in cirrhotic patients with progressive renal dysfunction. J Gastroenterol Hepatol. 2009;24:1030–1037.

    Article  CAS  PubMed  Google Scholar 

  12. Schrier RW, Arroyo V, Bernardi M, Epstein M, Henriksen JH, Rodés J. Peripheral arterial vasodilation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis. Hepatology. 1988;8:1151–1157.

    Article  CAS  PubMed  Google Scholar 

  13. Bengus A, Babiuc RD. Hyponatremia–predictor of adverse prognosis in cirrhosis. J Med Life. 2012;5:176–178.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Liamis G, Filippatos TD, Liontos A, Elisaf MS. Hyponatremia in patients with liver diseases: not just a cirrhosis-induced hemodynamic compromise. Hepatol Int. 2016;10:762–772.

    Article  CAS  PubMed  Google Scholar 

  15. Fortgens P, Pillay TS. Pseudohyponatremia revisited: a modern-day pitfall. Arch Pathol Lab Med. 2011;135:516–519.

    PubMed  Google Scholar 

  16. Vo H, Gosmanov AR, Garcia-Rosell M, Wall BM. Pseudohyponatremia in acute liver disease. Am J Med Sci. 2013;345:62–64.

    Article  PubMed  Google Scholar 

  17. Massonnet B, Delwail A, Ayrault J-M, Chagneau-Derrode C, Lecron J-C, Silvain C. Increased immunoglobulin A in alcoholic liver cirrhosis: exploring the response of B cells to Toll-like receptor 9 activation. Clin Exp Immunol. 2009;158:115–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoorn EJ, Zietse R. Diagnosis and treatment of hyponatremia: compilation of the guidelines. J Am Soc Nephrol 2017. doi:10.1681/ASN.2016101139. [Epub ahead of print] PubMed PMID: 28174217.

  19. Spasovski G, Vanholder R, Allolio B, et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Nephrol Dial Transplant. 2014;29:i1–i39.

    Article  PubMed  Google Scholar 

  20. Xiao HY, Wang YX, Xu TD, et al. Evaluation and treatment of altered mental status patients in the emergency department: Life in the fast lane. World J Emerg Med. 2012;3:270–277.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Filippatos TD, Liamis G, Elisaf MS. Ten pitfalls in the proper management of patients with hyponatremia. Postgrad Med. 2016;128:516–522.

    Article  PubMed  Google Scholar 

  22. Liamis G, Milionis H, Elisaf M. A review of drug-induced hyponatremia. Am J Kidney Dis. 2008;52:144–153.

    Article  CAS  PubMed  Google Scholar 

  23. Liamis G, Milionis HJ, Elisaf M. Hyponatremia in patients with infectious diseases. J Infect. 2011;63:327–335.

    Article  PubMed  Google Scholar 

  24. Angeli P, Wong F, Watson H, Ginès P. CAPPS investigators: hyponatremia in cirrhosis: results of a patient population survey. Hepatology. 2006;44:1535–1542.

    Article  CAS  PubMed  Google Scholar 

  25. Subramanya AR, Ellison DH. Distal convoluted tubule. Clin J Am Soc Nephrol. 2014;9:2147–2163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Danziger J, Zeidel ML. Osmotic homeostasis. Clin J Am Soc Nephrol. 2015;10:852–862.

    Article  CAS  PubMed  Google Scholar 

  27. Adrogué HJ, Madias NE. The challenge of hyponatremia. J Am Soc Nephrol. 2012;23:1140–1148.

    Article  PubMed  Google Scholar 

  28. Häussinger D. Low grade cerebral edema and the pathogenesis of hepatic encephalopathy in cirrhosis. Hepatology. 2006;43:1187–1190.

    Article  PubMed  CAS  Google Scholar 

  29. Restuccia T, Gómez-Ansón B, Guevara M, et al. Effects of dilutional hyponatremia on brain organic osmolytes and water content in patients with cirrhosis. Hepatology. 2004;39:1613–1622.

    Article  CAS  PubMed  Google Scholar 

  30. Sterns RH. Disorders of plasma sodium–causes, consequences, and correction. N Engl J Med. 2015;372:55–65.

    Article  PubMed  CAS  Google Scholar 

  31. Córdoba J, Garcia-Martinez R, Simón-Talero M. Hyponatremic and hepatic encephalopathies: similarities, differences and coexistence. Metab Brain Dis. 2010;25:73–80.

    Article  PubMed  Google Scholar 

  32. Solà E, Watson H, Graupera I, et al. Factors related to quality of life in patients with cirrhosis and ascites: relevance of serum sodium concentration and leg edema. J Hepatol. 2012;57:1199–1206.

    Article  PubMed  CAS  Google Scholar 

  33. Sinha VK, Ko B. Hyponatremia in cirrhosis-pathogenesis, treatment, and prognostic significance. Adv Chronic Kidney Dis. 2015;22:361–367.

    Article  PubMed  Google Scholar 

  34. Schwabl P, Bucsics T, Soucek K, et al. Risk factors for development of spontaneous bacterial peritonitis and subsequent mortality in cirrhotic patients with ascites. Liver Int. 2015;35:2121–2128.

    Article  PubMed  Google Scholar 

  35. Cárdenas A, Solà E, Rodríguez E, et al. Hyponatremia influences the outcome of patients with acute-on-chronic liver failure: an analysis of the CANONIC study. Crit Care. 2014;18:700.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Møller S, Krag A, Bendtsen F. Kidney injury in cirrhosis: pathophysiological and therapeutic aspects of hepatorenal syndromes. Liver Int. 2014;34:1153–1163.

    Article  PubMed  CAS  Google Scholar 

  37. Cárdenas A, Riggio O. Correction of hyponatraemia in cirrhosis: treating more than a number! J Hepatol. 2015;62:13–14.

    Article  PubMed  Google Scholar 

  38. Ahluwalia V, Heuman DM, Feldman G, et al. Correction of hyponatraemia improves cognition, quality of life, and brain oedema in cirrhosis. J Hepatol. 2015;62:75–82.

    Article  CAS  PubMed  Google Scholar 

  39. Yun BC, Kim WR. Hyponatremia in hepatic encephalopathy: an accomplice or innocent bystander? Am J Gastroenterol. 2009;104:1390–1391.

    Article  PubMed  Google Scholar 

  40. Watson H, Jepsen P, Wong F, Ginès P, Córdoba J, Vilstrup H. Satavaptan treatment for ascites in patients with cirrhosis: a meta-analysis of effect on hepatic encephalopathy development. Metab Brain Dis. 2013;28:301–305.

    Article  CAS  PubMed  Google Scholar 

  41. Sterns RH, Nigwekar SU, Hix JK. The treatment of hyponatremia. Semin Nephrol. 2009;29:282–299.

    Article  CAS  PubMed  Google Scholar 

  42. King JD, Rosner MH. Osmotic demyelination syndrome. Am J Med Sci. 2010;339:561–567.

    Article  PubMed  Google Scholar 

  43. Gerbes AL, Gülberg V, Ginès P, et al. Therapy of hyponatremia in cirrhosis with a vasopressin receptor antagonist: a randomized double-blind multicenter trial. Gastroenterology. 2003;124:933–939.

    Article  CAS  PubMed  Google Scholar 

  44. Ginès P, Wong F, Watson H, et al. Clinical trial: short-term effects of combination of satavaptan, a selective vasopressin V2 receptor antagonist, and diuretics on ascites in patients with cirrhosis without hyponatraemia–a randomized, double-blind, placebo-controlled study. Aliment Pharmacol Ther. 2010;31:834–845.

    PubMed  Google Scholar 

  45. Ginès P, Wong F, Watson H, Milutinovic S, del Arbol LR, Olteanu D. Effects of satavaptan, a selective vasopressin V(2) receptor antagonist, on ascites and serum sodium in cirrhosis with hyponatremia: a randomized trial. Hepatology. 2008;48:204–213.

    Article  PubMed  CAS  Google Scholar 

  46. McCormick PA, Mistry P, Kaye G, Burroughs AK, McIntyre N. Intravenous albumin infusion is an effective therapy for hyponatraemia in cirrhotic patients with ascites. Gut. 1990;31:204–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Garcia-Martinez R, Caraceni P, Bernardi M, Ginès P, Arroyo V, Jalan R. Albumin: pathophysiologic basis of its role in the treatment of cirrhosis and its complications. Hepatology. 2013;58:1836–1846.

    Article  CAS  PubMed  Google Scholar 

  48. Soupart A, Coffernils M, Couturier B, Gankam-Kengne F, Decaux G. Efficacy and tolerance of urea compared with vaptans for long-term treatment of patients with SIADH. Clin J Am Soc Nephrol. 2012;7:742–747.

    Article  CAS  PubMed  Google Scholar 

  49. Miller PD, Linas SL, Schrier RW. Plasma demeclocycline levels and nephrotoxicity. Correlation in hyponatremic cirrhotic patients. JAMA. 1980;243:2513–2515.

    Article  CAS  PubMed  Google Scholar 

  50. John S, Thuluvath PJ. Hyponatremia in cirrhosis: pathophysiology and management. World J Gastroenterol.. 2015;21:3197–3205.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Schrier RW, Gross P, Gheorghiade M, et al. Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med. 2006;355:2099–2112.

    Article  CAS  PubMed  Google Scholar 

  52. Wong F, Blei AT, Blendis LM, Thuluvath PJ. A vasopressin receptor antagonist (VPA-985) improves serum sodium concentration in patients with hyponatremia: a multicenter, randomized, placebo-controlled trial. Hepatology. 2003;37:182–191.

    Article  CAS  PubMed  Google Scholar 

  53. Verbalis JG, Adler S, Schrier RW, Berl T, Zhao Q, Czerwiec FS. Efficacy and safety of oral tolvaptan therapy in patients with the syndrome of inappropriate antidiuretic hormone secretion. Eur J Endocrinol. 2011;164:725–732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Berl T, Quittnat-Pelletier F, Verbalis JG, et al. Oral tolvaptan is safe and effective in chronic hyponatremia. J Am Soc Nephrol. 2010;21:705–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dahl E, Gluud LL, Kimer N, Krag A. Meta-analysis: the safety and efficacy of vaptans (tolvaptan, satavaptan and lixivaptan) in cirrhosis with ascites or hyponatraemia. Aliment Pharmacol Ther. 2012;36:619–626.

    Article  CAS  PubMed  Google Scholar 

  56. Higashihara E, Torres VE, Chapman AB, et al. Tolvaptan in autosomal dominant polycystic kidney disease: three years’ experience. Clin J Am Soc Nephrol. 2011;6:2499–2507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. FDA: FDA Drug Safety Communication: FDA limits duration and usage of Samsca (tolvaptan) due to possible liver injury leading to organ transplant or death. Available at: http://www.fda.gov/downloads/Drugs/DrugSafety/UCM350084.pdf. Accessed July 20, 2016.

  58. Wong F, Watson H, Gerbes A, et al. Satavaptan for the management of ascites in cirrhosis: efficacy and safety across the spectrum of ascites severity. Gut. 2012;61:108–116.

    Article  CAS  PubMed  Google Scholar 

  59. O’Leary JG, Davis GL. Conivaptan increases serum sodium in hyponatremic patients with end-stage liver disease. Liver Transpl. 2009;15:1325–1329.

    Article  PubMed  Google Scholar 

  60. Facciorusso A, Amoruso A, Neve V, Antonino M, Prete VD, Barone M. Role of vaptans in the management of hydroelectrolytic imbalance in liver cirrhosis. World J Hepatol. 2014;6:793–799.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Runyon BA. Introduction to the revised American association for the study of liver diseases practice guideline management of adult patients with ascites due to cirrhosis 2012. Hepatology. 2013;57:1651–1653.

    Article  PubMed  Google Scholar 

  62. European Association for the Study of the Liver. EASL clinical practice guidelines on the management of ascites, spontaneous bacterial peritonitis, and hepatorenal syndrome in cirrhosis. J Hepatol. 2010;53:397–417.

    Article  Google Scholar 

  63. Gianotti RJ, Cárdenas A. Hyponatraemia and cirrhosis. Gastroenterol Rep (Oxf). 2014;2:21–26.

    Article  Google Scholar 

  64. Ginès P, Guevara M. Hyponatremia in cirrhosis: pathogenesis, clinical significance, and management. Hepatology. 2008;48:1002–1010.

    Article  PubMed  CAS  Google Scholar 

  65. Bernardi M, Ricci CS, Santi L. Hyponatremia in patients with cirrhosis of the liver. J Clin Med. 2014;4:85–101.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Moritz ML, Ayus JC. Maintenance intravenous fluids in acutely ill patients. N Engl J Med. 2015;373:1350–1360.

    Article  PubMed  Google Scholar 

  67. Casey TH, Summerskill WH, Orvis AL. Body and serum potassium in liver disease. I. Relationship to hepatic function and associated factors. Gastroenterology. 1965;48:198–207.

    CAS  PubMed  Google Scholar 

  68. Nagant De Deuxchaines C, Collet RA, Busset R, Mach RS. Exchangeable potassium in wasting, amyotrophy, heart-disease, and cirrhosis of the liver. Lancet. 1961;1:681–687.

    Article  Google Scholar 

  69. Casey TH, Summerskill WH, Bickford RG, Rosevear JW. Body and serum potassium in liver disease. II. Relationships to arterial ammonia, blood pH, and hepatic coma. Gastroenterology. 1965;48:208–215.

    CAS  PubMed  Google Scholar 

  70. Unwin RJ, Luft FC, Shirley DG. Pathophysiology and management of hypokalemia: a clinical perspective. Nat Rev Nephrol. 2011;7:75–84.

    Article  CAS  PubMed  Google Scholar 

  71. Krapf R, Beeler I, Hertner D, Hulter HN. Chronic respiratory alkalosis. The effect of sustained hyperventilation on renal regulation of acid-base equilibrium. N Engl J Med. 1991;324:1394–1401.

    Article  CAS  PubMed  Google Scholar 

  72. Krapf R, Caduff P, Wagdi P, Stäubli M, Hulter HN. Plasma potassium response to acute respiratory alkalosis. Kidney Int. 1995;47:217–224.

    Article  CAS  PubMed  Google Scholar 

  73. Gabduzda GJ, Hall PW. Relation of potassium depletion to renal ammonium metabolism and hepatic coma. Medicine (Baltimore). 1966;45:481–490.

    Article  CAS  Google Scholar 

  74. Abu Hossain S, Chaudhry FA, Zahedi K, Siddiqui F, Amlal H. Cellular and molecular basis of increased ammoniagenesis in potassium deprivation. Am J Physiol Renal Physiol. 2011;301:F969–F978.

    Article  CAS  PubMed  Google Scholar 

  75. Palmer BF. Regulation of potassium homeostasis. Clin J Am Soc Nephrol. 2015;10:1050–1060.

    Article  CAS  PubMed  Google Scholar 

  76. Koivisto M, Valta P, Höckerstedt K, Lindgren L. Magnesium depletion in chronic terminal liver cirrhosis. Clin Transplant. 2002;16:325–328.

    Article  PubMed  Google Scholar 

  77. Elisaf M, Merkouropoulos M, Tsianos EV, Siamopoulos KC. Pathogenetic mechanisms of hypomagnesemia in alcoholic patients. J Trace Elem Med Biol. 1995;9:210–214.

    Article  CAS  PubMed  Google Scholar 

  78. De Marchi S, Cecchin E, Basile A, Bertotti A, Nardini R, Bartoli E. Renal tubular dysfunction in chronic alcohol abuse–effects of abstinence. N Engl J Med. 1993;329:1927–1934.

    Article  PubMed  Google Scholar 

  79. Martin KJ, González EA, Slatopolsky E. Clinical consequences and management of hypomagnesemia. J Am Soc Nephrol. 2009;20:2291–2295.

    Article  CAS  PubMed  Google Scholar 

  80. Ayuk J, Gittoes NJ. Treatment of hypomagnesemia. Am J Kidney Dis. 2014;63:691–695.

    Article  CAS  PubMed  Google Scholar 

  81. Huang CL, Kuo E. Mechanism of hypokalemia in magnesium deficiency. J Am Soc Nephrol. 2007;18:2649–2652.

    Article  PubMed  CAS  Google Scholar 

  82. Wiese S, Hove JD, Bendtsen F, Møller S. Cirrhotic cardiomyopathy: pathogenesis and clinical relevance. Nat Rev Gastroenterol Hepatol. 2014;11:177–186.

    Article  CAS  PubMed  Google Scholar 

  83. Mozos I. Arrhythmia risk in liver cirrhosis. World J Hepatol. 2015;7:662–672.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Decaux G, Soupart A, Cauchie P, Delwiche F. Potassium homeostasis in liver cirrhosis. Arch Intern Med. 1988;148:547–548.

    Article  CAS  PubMed  Google Scholar 

  85. Maiwall R, Kumar S, Sharma MK, Wani Z, Ozukum M, Sarin SK. Prevalence and prognostic significance of hyperkalemia in hospitalized patients with cirrhosis. J Gastroenterol Hepatol. 2015;31:988–994.

    Article  CAS  Google Scholar 

  86. Abbas Z, Mumtaz K, Salam A, Jafri W. Factors predicting hyperkalemia in patients with cirrhosis receiving spironolactone. J Coll Physicians Surg Pak. 2003;13:382–384.

    PubMed  Google Scholar 

  87. Karagiannis AK, Nakouti T, Pipili C, Cholongitas E. Adrenal insufficiency in patients with decompensated cirrhosis. World J Hepatol. 2015;7:1112–1124.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Bayliss DA, Millhorn DE, Gallman EA, Cidlowski JA. Progesterone stimulates respiration through a central nervous system steroid receptor-mediated mechanism in cat. Proc Natl Acad Sci USA. 1987;84:7788–7792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lustik SJ, Chhibber AK, Kolano JW, et al. The hyperventilation of cirrhosis: progesterone and estradiol effects. Hepatology. 1997;25:55–58.

    Article  CAS  PubMed  Google Scholar 

  90. Kaltsakas G, Antoniou E, Palamidas AF, et al. Dyspnea and respiratory muscle strength in end-stage liver disease. World J Hepatol. 2013;5:56–63.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Passino C, Giannoni A, Mannucci F, et al. Abnormal hyperventilation in patients with hepatic cirrhosis: role of enhanced chemosensitivity to carbon dioxide. Int J Cardiol. 2012;154:22–26.

    Article  PubMed  Google Scholar 

  92. Palmer BF. Evaluation and treatment of respiratory alkalosis. Am J Kidney Dis. 2012;60:834–838.

    Article  CAS  PubMed  Google Scholar 

  93. Soifer JT, Kim HT. Approach to metabolic alkalosis. Emerg Med Clin North Am. 2014;32:453–463.

    Article  PubMed  Google Scholar 

  94. Luke RG, Galla JH. It is chloride depletion alkalosis, not contraction alkalosis. J Am Soc Nephrol. 2012;23:204–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Schrier RW. Use of diuretics in heart failure and cirrhosis. Semin Nephrol. 2011;31:503–512.

    Article  CAS  PubMed  Google Scholar 

  96. Qavi AH, Kamal R, Schrier RW. Clinical Use of Diuretics in Heart Failure, Cirrhosis, and Nephrotic Syndrome. Int J Nephrol. 2015;2015:975934.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Arroyo V, García-Martinez R, Salvatella X. Human serum albumin, systemic inflammation, and cirrhosis. J Hepatol. 2014;61:396–407.

    Article  CAS  PubMed  Google Scholar 

  98. Bruno CM. Acid-base disturbance in liver cirrhosis. Eur J Gastroenterol Hepatol. 2016;28:363.

    Article  PubMed  Google Scholar 

  99. Berend K, de Vries APJ, Gans ROB. Physiological approach to assessment of acid-base disturbances. N Engl J Med. 2015;372:195.

    PubMed  Google Scholar 

  100. Bernardi M, Predieri S. Disturbances of acid-base balance in cirrhosis: a neglected issue warranting further insights. Liver Int. 2005;25:463–466.

    Article  PubMed  Google Scholar 

  101. Kraut JA, Madias NE. Metabolic acidosis: pathophysiology, diagnosis and management. Nat Rev Nephrol. 2010;6:274–285.

    Article  CAS  PubMed  Google Scholar 

  102. Kraut JA, Madias NE. Lactic acidosis. N Engl J Med. 2014;371:2309–2319.

    Article  PubMed  CAS  Google Scholar 

  103. Kraut JA, Madias NE. Lactic acidosis: current treatments and future directions. Am J Kidney Dis. 2016.

  104. Lévy S, Hervé C, Delacoux E, Erlinger S. Thiamine deficiency in hepatitis C virus and alcohol-related liver diseases. Dig Dis Sci. 2002;47:543–548. doi:10.1023/A:1017907817423.

    Article  PubMed  Google Scholar 

  105. Keating GM. Entecavir: a review of its use in the treatment of chronic hepatitis B in patients with decompensated liver disease. Drugs. 2011;71:2511–2529.

    Article  CAS  PubMed  Google Scholar 

  106. García-Compeán D, González-González JA, Lavalle-González FJ, González-Moreno EI, Maldonado-Garza HJ, Villarreal-Pérez JZ. The treatment of diabetes mellitus of patients with chronic liver disease. Ann Hepatol. 2015;14:780–788.

    Article  PubMed  Google Scholar 

  107. Paré P, Reynolds TB. Impaired renal acidification in alcoholic liver disease. Arch Intern Med. 1984;144:941–944.

    Article  PubMed  Google Scholar 

  108. Caregaro L, Lauro S, Ricci G, Gatta A, Zuin R, Ruol A. Pathogenetic relationships between renal tubular acidosis and sodium metabolism alterations in liver cirrhosis. Digestion. 1983;26:179–186.

    Article  CAS  PubMed  Google Scholar 

  109. Subrahmanyam DK, Vadivelan M, Giridharan S, Balamurugan N. Wilson’s disease: a rare cause of renal tubular acidosis with metabolic bone disease. Indian J Nephrol. 2014;24:171–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Golding PL, Mason AS. Renal tubular acidosis and autoimmune liver disease. Gut. 1971;12:153–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tsantoulas DC, McFarlane IF, Portmann B, Eddleston AL, Williams R. Proceedings: cell-mediated immunity to human Tamm-Horsfall glycoprotein in autoimmune liver disease associated with renal tubular acidosis. Gut. 1974;15:826.

    CAS  PubMed  Google Scholar 

  112. Komatsuda A, Wakui H, Ohtani H, et al. Tubulointerstitial nephritis and renal tubular acidosis of different types are rare but important complications of primary biliary cirrhosis. Nephrol Dial Transplant. 2010;25:3575–3579.

    Article  PubMed  Google Scholar 

  113. Unwin RJ, Shirley DG, Capasso G. Urinary acidification and distal renal tubular acidosis. J Nephrol. 2002;15:S142–S150.

    CAS  PubMed  Google Scholar 

  114. Rastogi SP, Crawford C, Wheeler R, Flanigan W, Arruda JA. Effect of furosemide on urinary acidification in distal renal tubular acidosis. J Lab Clin Med. 1984;104:271–282.

    CAS  PubMed  Google Scholar 

  115. Batlle DC, von Riotte A, Schlueter W. Urinary sodium in the evaluation of hyperchloremic metabolic acidosis. N Engl J Med. 1987;316:140–144.

    Article  CAS  PubMed  Google Scholar 

  116. Kamel KS, Ethier JH, Richardson RM, Bear RA, Halperin ML. Urine electrolytes and osmolality: when and how to use them. Am J Nephrol. 1990;10:89–102.

    Article  CAS  PubMed  Google Scholar 

  117. Batlle DC, Hizon M, Cohen E, Gutterman C, Gupta R. The use of the urinary anion gap in the diagnosis of hyperchloremic metabolic acidosis. N Engl J Med. 1988;318:594–599.

    Article  CAS  PubMed  Google Scholar 

  118. Wagner CA. Effect of mineralocorticoids on acid-base balance. Nephron Physiol. 2014;128:26–34.

    Article  CAS  PubMed  Google Scholar 

  119. Gabow PA, Moore S, Schrier RW. Spironolactone-induced hyperchloremic acidosis in cirrhosis. Ann Intern Med. 1979;90:338–340.

    Article  CAS  PubMed  Google Scholar 

  120. Fabrizi F, Messa P. Challenges in renal failure treatment before liver transplant. Clin Liver Dis. 2017;21:303–319.

    Article  PubMed  Google Scholar 

  121. Heuman DM, Abou-Assi SG, Habib A, et al. Persistent ascites and low serum sodium identify patients with cirrhosis and low MELD scores who are at high risk for early death. Hepatology. 2004;40:802–810.

    Article  PubMed  Google Scholar 

  122. Ruf AE, Kremers WK, Chavez LL, Descalzi VI, Podesta LG, Villamil FG. Addition of serum sodium into the MELD score predicts waiting list mortality better than MELD alone. Liver Transpl. 2005;11:336–343.

    Article  PubMed  Google Scholar 

  123. Londoño MC, Cárdenas A, Guevara M, et al. MELD score and serum sodium in the prediction of survival of patients with cirrhosis awaiting liver transplantation. Gut. 2007;56:1283–1290.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Biggins SW, Rodriguez HJ, Bacchetti P, Bass NM, Roberts JP, Terrault NA. Serum sodium predicts mortality in patients listed for liver transplantation. Hepatology. 2005;41:32–39.

    Article  CAS  PubMed  Google Scholar 

  125. OPTN/UNOS Liver and Intestinal Organ Transplantation Committee. Proposal to Add Serum Sodium to the MELD Score. Available at: https://optn.transplant.hrsa.gov/media/1834/liver_boardreport_20140702.pdf Accessed July 28, 2016.

  126. Fisher RA, Heuman DM, Harper AM, et al. Region 11 MELD Na exception prospective study. Ann Hepatol. 2012;11:62–67.

    CAS  PubMed  Google Scholar 

  127. OPTN/UNOS Policy Notice. Clerical changes for implementation of adding serum sodium to the MELD score. Available at: https://optn.transplant.hrsa.gov/media/1575/policynotice_20151101.pdf Accessed July 28, 2016.

  128. Sersté T, Gustot T, Rautou PE, et al. Severe hyponatremia is a better predictor of mortality than MELDNa in patients with cirrhosis and refractory ascites. J Hepatol. 2012;57:274–280.

    Article  PubMed  CAS  Google Scholar 

  129. Cárdenas A, Ginès P. Predicting mortality in cirrhosis–serum sodium helps. N Engl J Med. 2008;359:1060–1062.

    Article  PubMed  Google Scholar 

  130. Biggins SW. Use of serum sodium for liver transplant graft allocation: a decade in the making, now is it ready for primetime? Liver Transpl. 2015;21:279–281.

    Article  PubMed  Google Scholar 

  131. Cimen S, Guler S, Ayloo S, Molinari M. Implications of Hyponatremia in Liver Transplantation. J Clin Med. 2015;4:66–74.

    Article  Google Scholar 

  132. Christensen E, Gunson B, Neuberger J. Optimal timing of liver transplantation for patients with primary biliary cirrhosis: use of prognostic modelling. J Hepatol. 1999;30:285–292.

    Article  CAS  PubMed  Google Scholar 

  133. Londoño MC, Guevara M, Rimola A, et al. Hyponatremia impairs early posttransplantation outcome in patients with cirrhosis undergoing liver transplantation. Gastroenterology. 2006;130:1135–1143.

    Article  PubMed  Google Scholar 

  134. Boin-I-de FSF, Leonardi MI, Udo EY, Sevá-Pereira T, Stucchi RSB, Leonardi LS. The application of MELD score in patients submitted to liver transplantation: a retrospective analysis of survival and the predictive factors in the short and long term. Arq Gastroenterol. 2008;45:275–283.

    Article  Google Scholar 

  135. Dawwas MF, Lewsey JD, Neuberger JM, Gimson AE. The impact of serum sodium concentration on mortality after liver transplantation: a cohort multicenter study. Liver Transpl. 2007;13:1115–1124.

    Article  PubMed  Google Scholar 

  136. Hackworth WA, Heuman DM, Sanyal AJ, et al. Effect of hyponatraemia on outcomes following orthotopic liver transplantation. Liver Int. 2009;29:1071–1077.

    Article  CAS  PubMed  Google Scholar 

  137. Yun BC, Kim WR, Benson JT, et al. Impact of pretransplant hyponatremia on outcome following liver transplantation. Hepatology. 2009;49:1610–1615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Leise MD, Yun BC, Larson JJ, et al. Effect of the pretransplant serum sodium concentration on outcomes following liver transplantation. Liver Transpl. 2014;20:687–697.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Karapanagiotou A, Kydona C, Papadopoulos S, et al. The effect of hyponatremia on the outcome of patients after orthotopic liver transplantation. Transplant Proc. 2012;44:2724–2726.

    Article  CAS  PubMed  Google Scholar 

  140. Sharma P, Schaubel DE, Goodrich NP, Merion RM. Serum sodium and survival benefit of liver transplantation. Liver Transpl. 2015;21:308–313.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Lee EM, Kang JK, Yun S-C, et al. Risk factors for central pontine and extrapontine myelinolysis following orthotopic liver transplantation. Eur Neurol. 2009;62:362–368.

    Article  PubMed  Google Scholar 

  142. Morard I, Gasche Y, Kneteman M, et al. Identifying risk factors for central pontine and extrapontine myelinolysis after liver transplantation: a case-control study. Neurocrit Care. 2014;20:287–295.

    Article  PubMed  Google Scholar 

  143. Totsuka E, Dodson F, Urakami A, et al. Influence of high donor serum sodium levels on early postoperative graft function in human liver transplantation: effect of correction of donor hypernatremia. Liver Transpl Surg. 1999;5:421–428.

    Article  CAS  PubMed  Google Scholar 

  144. Cywinski JB, Mascha E, Miller C, et al. Association between donor-recipient serum sodium differences and orthotopic liver transplant graft function. Liver Transpl. 2008;14:59–65.

    Article  PubMed  Google Scholar 

  145. Mangus RS, Fridell JA, Vianna RM, et al. Severe hypernatremia in deceased liver donors does not impact early transplant outcome. Transplantation. 2010;90:438–443.

    Article  PubMed  Google Scholar 

  146. Dawwas MF, Lewsey JD, Watson CJ, Gimson AE. The impact of serum potassium concentration on mortality after liver transplantation: a cohort multicenter study. Transplantation. 2009;88:402–410.

    Article  PubMed  Google Scholar 

  147. Ayres EJ, Lee BR, Weckwerth JA, Myhre LJ, Freese D, Lobritto S. Potassium supplementation requirement post orthotopic liver transplantation in children. J Liver: Dis Transplant. 2013;2:2.

    Google Scholar 

  148. Xia VW, Du B, Tran A, et al. Intraoperative hypokalemia in pediatric liver transplantation: incidence and risk factors. Anesth Analg. 2006;103:587–593.

    Article  CAS  PubMed  Google Scholar 

  149. Nakasuji M, Bookallil MJ. Pathophysiological mechanisms of postrevascularization hyperkalemia in orthotopic liver transplantation. Anesth Analg. 2000;91:1351–1355.

    Article  CAS  PubMed  Google Scholar 

  150. Merritt WT. Metabolism and liver transplantation: review of perioperative issues. Liver Transpl. 2000;6:S76–S84.

    Article  CAS  PubMed  Google Scholar 

  151. Shangraw RE. Metabolic issues in liver transplantation. Int Anesthesiol Clin. 2006;44:1–20.

    Article  PubMed  Google Scholar 

  152. Shangraw RE, Hexem JG. Glucose and potassium metabolic responses to insulin during liver transplantation. Liver Transpl Surg. 1996;2:443–454.

    Article  CAS  PubMed  Google Scholar 

  153. Li Q, Zhou M-T, Wang Y, et al. Effect of insulin on hyperkalemia during anhepatic stage of liver transplantation. World J Gastroenterol. 2004;10:2427–2429.

    CAS  PubMed  Google Scholar 

  154. Nadim MK, Annanthapanyasut W, Matsuoka L, et al. Intraoperative hemodialysis during liver transplantation: a decade of experience. Liver Transpl. 2014;20:756–764.

    Article  PubMed  Google Scholar 

  155. Raj D, Abreo K, Zibari G. Metabolic alkalosis after orthotopic liver transplantation. Am J Transpl. 2003;3:1566–1569.

    Article  CAS  Google Scholar 

  156. Contreras G, Garces G, Reich J, et al. Predictors of alkalosis after liver transplantation. Am J Kidney Dis. 2002;40:517–524.

    Article  CAS  PubMed  Google Scholar 

  157. Boniatti MM, Filho EMR, Cardoso PRC, Vieira SRR. Physicochemical evaluation of acid-base disorders after liver transplantation and the contribution from administered fluids. Transplant Proc. 2013;45:2283–2287.

    Article  CAS  PubMed  Google Scholar 

  158. Guidet B, Soni N, Rocca Della G, et al. A balanced view of balanced solutions. Crit Care. 2010;14:325.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Bobadilla NA, Gamba G. New insights into the pathophysiology of cyclosporine nephrotoxicity: a role of aldosterone. Am J Physiol Renal Physiol. 2007;293:F2–F9.

    Article  CAS  PubMed  Google Scholar 

  160. Lee CH, Kim GH. Electrolyte and Acid-base disturbances induced by clacineurin inhibitors. Electrolyte Blood Press. 2007;5:126–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Carrillo-Maravilla.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez, J.V., Carrillo-Pérez, D.L., Rosado-Canto, R. et al. Electrolyte and Acid–Base Disturbances in End-Stage Liver Disease: A Physiopathological Approach. Dig Dis Sci 62, 1855–1871 (2017). https://doi.org/10.1007/s10620-017-4597-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-017-4597-8

Keywords

Navigation