Skip to main content
Log in

Effects of Moveable Platform Training in Preventing Slip-Induced Falls in Older Adults

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Identifying effective interventions is vital in preventing slip-induced fall accidents in older adults. The purpose of the current study was to evaluate the efficacy of moveable platform training in improving recovery reactions and reducing fall frequency in older adults. Twenty-four older adults were recruited and randomly assigned to two groups (training and control). Both groups underwent three sessions including baseline slip, training, and transfer of training on a slippery surface. Both groups experienced two slips on a slippery surface, one during the baseline and the other (after 2 weeks) during the transfer of training session. In the training session, the training group underwent twelve simulated slips using a moveable platform while the control group performed normal walking trials. Kinematic, kinetic, and EMG data were collected during all the sessions. Results indicated a reduced incidence of falls in the training group during the transfer of training trial as compared to the control group. The training group was able to transfer proactive and reactive control strategies learned during training to the second slip trial. The proactive adjustments include increased center-of-mass velocity and transitional acceleration after training. Reactive adjustments include reduction in muscle onset and time to peak activations of knee flexors and ankle plantar flexors, reduced ankle and knee coactivation, reduced slip displacement, and reduced time to peak knee flexion, trunk flexion, and hip flexion velocities. In general, the results indicated a beneficial effect of perturbation training in reducing slip severity and recovery kinematics in healthy older adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Baratta, R., M. Solomonow, B. H. Zhou, D. Letson, R. Chuinard, and R. D’Ambrosia. Muscular coactivation. Am. J. Sports Med. 16(2):113–122, 1988.

    Article  PubMed  CAS  Google Scholar 

  2. Bhatt, T., and Y. C. Pai. Generalization of gait adaptation for fall prevention: from moveable platform to slippery floor. J. Neurophysiol. 101(2):948–957, 2009.

    Article  PubMed  CAS  Google Scholar 

  3. Bhatt, T., E. Wang, and Y. C. Pai. Retention of adaptive control over varying intervals: prevention of slip-induced backward balance loss during gait. J. Neurophysiol. 95(5):2913–2922, 2006.

    Article  PubMed  CAS  Google Scholar 

  4. Bieryla, K. A., M. L. Madigan, and M. A. Nussbaum. Practicing recovery from a simulated trip improves recovery kinematics after an actual trip. Gait Posture 26(2):208–213, 2007.

    Article  PubMed  Google Scholar 

  5. Brady, R., M. Pavol, T. Owings, and M. Grabiner. Foot displacement but not velocity predicts the outcome of a slip induced in young subjects while walking. J. Biomech. 33(7):803–808, 2000.

    Article  PubMed  CAS  Google Scholar 

  6. Brener, J. Sensory and perceptual determinants of voluntary visceral control. In: Bio-Feedback: Theory and Research, edited by G. E. Schwartz, and J. Beatty. New York: Academic Press, 1977, pp. 29–66.

    Google Scholar 

  7. Briggs, J. Sports Therapy: Theoretical and Practical Thoughts and Considerations. Chichester: Corpus Publishing, 2001.

    Google Scholar 

  8. Buchner, D. M., M. E. Cress, B. J. de Lateur, P. C. Esselman, A. J. Margherita, R. Price, et al. The effect of strength and endurance training on gait, balance, fall risk, and health services use in community-living older adults. J. Gerontol. A Biol. Sci. Med. Sci. 52(4):M218–M224, 1997.

    Article  PubMed  CAS  Google Scholar 

  9. Campbell, A. J., M. C. Robertson, M. M. Gardner, R. N. Norton, M. W. Tilyard, and D. M. Buchner. Randomised controlled trial of a general practice programme of home based exercise to prevent falls in elderly women. BMJ 315(7115):1065–1069, 1997.

    Article  PubMed  CAS  Google Scholar 

  10. Carolan, B., and E. Cafarelli. Adaptations in coactivation after isometric resistance training. J. Appl. Physiol. 73(3):911–917, 1992.

    PubMed  CAS  Google Scholar 

  11. Cham, R., and M. S. Redfern. Changes in gait when anticipating slippery floors. Gait Posture 15(2):159–171, 2002.

    Article  PubMed  Google Scholar 

  12. Chambers, A. J., and R. Cham. Slip-related muscle activation patterns in the stance leg during walking. Gait Posture 25(4):565–572, 2007.

    Article  PubMed  Google Scholar 

  13. Dick, M. B., S. Hsieh, C. Dick-Muehlke, D. S. Davis, and C. W. Cotman. The variability of practice hypothesis in motor learning: does it apply to Alzheimer’s disease? Brain Cogn. 44:470–489, 2000.

    Article  PubMed  CAS  Google Scholar 

  14. Drowatzky, K. L., and J. N. Drowatzky. Physical training programs for the elderly. Clin. Kinesiol. 53:52–62, 1999.

    Google Scholar 

  15. Dunn, T. G., S. E. Gillig, S. E. Ponser, and N. Weil. The learning process in biofeedback: is it feed-forward or feedback? Biofeedback Self Regul. 11(2):143–155, 1986.

    Article  PubMed  CAS  Google Scholar 

  16. Enoka, R. M. Neuromechanics of Human Movement. Champaign, IL: Human Kinetics, pp. 298–299, 2008.

    Google Scholar 

  17. Gordon, C. R., W. A. Fletcher, J. G. Melvill, and V. R. Edgerton. Adaptive plasticity in the control of locomotor trajectory. Exp. Brain Res. 102:540–545, 1995.

    Article  PubMed  CAS  Google Scholar 

  18. Grabiner, M. D., S. Donovan, M. L. Bareither, J. R. Marone, K. Hamstra-Wright, S. Gatts, et al. Trunk kinematics and fall risk of older adults: translating biomechanical results to the clinic. J. Electromyogr. Kinesiol. 18(2):197–204, 2008.

    Article  PubMed  Google Scholar 

  19. Grillner, S. The role of muscle stiffness in meeting the changing postural and locomotor requirements for force development by the ankle extensors. Acta Physiol. Scand. 82(1):92–108, 1972.

    Article  Google Scholar 

  20. Guyton, A. C. Textbook of Medical Physiology. Philadelphia: Saunders, pp. 534–536, 562–564, 1981.

  21. Hausdorff, J. M., D. A. Rios, and H. K. Edelberg. Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch. Phys. Med. Rehabil. 82(8):1050–1056, 2001.

    Article  PubMed  CAS  Google Scholar 

  22. Hodgson, J. A., R. R. Roy, R. DeLeon, B. Dobkin, and R. V. Edgerton. Can the mammalian lumbar spinal cord learn a motor task? Med. Sci. Sports Exerc. 26(12):1491–1497, 1994.

    PubMed  CAS  Google Scholar 

  23. Jensen, L., T. Prokop, and V. Dietz. Adaptational effects during human split-belt walking: influence of afferent input. Exp. Brain Res. 118(1):126–130, 1998.

    Article  PubMed  CAS  Google Scholar 

  24. Kannus, P., H. Sievänen, M. Palvanen, T. Järvinen, and J. Parkkari. Prevention of falls and consequent injuries in elderly people. Lancet 366(9500):1885–1893, 2005.

    Article  PubMed  Google Scholar 

  25. Kottke, F. J., D. Halpern, J. K. M. Easton, A. T. Ozel, and C. A. Burrill. The training of coordination. Arch. Phys. Med. Rehabil. 59:567–572, 1978.

    PubMed  CAS  Google Scholar 

  26. Lam, T., M. Anderschitz, and V. Dietz. Contribution of feedback and feedforward strategies to locomotor adaptations. J. Neurophysiol. 95(2):766–773, 2006.

    Article  PubMed  Google Scholar 

  27. Lee, T. D., L. R. Swanson, and A. L. Hall. What is repeated in a repetition? Effects of practice conditions on motor skill acquisition. Phys. Ther. 71(2):150–156, 1991.

    PubMed  CAS  Google Scholar 

  28. Lockhart, T. An integrated approach towards identifying age-related mechanisms of slip initiated falls. J. Electromyogr. Kinesiol. 18(2):205–217, 2008.

    Article  PubMed  Google Scholar 

  29. Lockhart, T., and S. Kim. Relationship between hamstring activation rate and heel contact velocity: factors influencing age-related slip-induced falls. Gait Posture 24(1):23–34, 2006.

    Article  PubMed  Google Scholar 

  30. Lockhart, T., and J. Liu. Effects of aging on lower extremity joint torque and muscle activation patterns during slip-induced falls. J. Biomech. 39(Supplement 1):S87, 2006.

    Article  Google Scholar 

  31. Lockhart, T., and J. Smith. Effects of aging on the biomechanics of slips and falls. Hum. Factors 47(4):708–729, 2005.

    Article  PubMed  Google Scholar 

  32. Lockhart, T., J. Wolstad, and J. Smith. Effects of age-related gait changes on biomechanics of slips and falls. Ergonomics 46(12):1136–1140, 2003.

    Article  PubMed  Google Scholar 

  33. Mansfield, A., A. Peters, B. Liu, and B. Maki. A perturbation-based balance training program for older adults: study protocol for a randomised controlled trial. BMC Geriatr. 7(1):12, 2007.

    Article  PubMed  Google Scholar 

  34. Marigold, D. S., A. J. Bethune, and A. E. Patla. Role of the unperturbed limb and arms in the reactive recovery response to an unexpected slip during locomotion. J. Neurophysiol. 89(4):1727–1737, 2003.

    Article  PubMed  Google Scholar 

  35. Osternig, L. R., B. L. Caster, and C. R. James. Contralateral hamstring (biceps femoris) coactivation patterns and anterior cruciate ligament dysfunction. Med. Sci. Sports Exerc. 27(6):805–808, 1995.

    PubMed  CAS  Google Scholar 

  36. Pai, Y.-C., and J. Patton. Center of mass velocity-position predictions for balance control. J. Biomech. 30(4):347–354, 1997.

    Article  PubMed  CAS  Google Scholar 

  37. Parijat, P., and T. E. Lockhart. Effects of quadriceps fatigue on the biomechanics of gait and slip propensity. Gait Posture 28(4):568–573, 2008.

    Article  PubMed  Google Scholar 

  38. Pavol, M. J., and Y. C. Pai. Feedforward adaptations are used to compensate for a potential loss of balance. Exp. Brain Res. 145(4):528–538, 2002.

    Article  PubMed  Google Scholar 

  39. Perkins, P. J. Measurement of Slip Between the Shoe and Ground During Walking, Vol. 649. American Society of Testing and Materials Special Technical Publication, West Conshohocken, PA, pp. 71–87, 1978.

  40. Rudolph, K. S., M. J. Axe, T. S. Buchanan, J. P. Scholz, and L. Snyder-Mackler. Dynamic stability in the anterior cruciate ligament deficient knee. Knee Surg. Sports Traumatol. Arthrosc. 9(2):62–71, 2001.

    Article  PubMed  CAS  Google Scholar 

  41. Schmidt, R. A. A schema theory of discrete motor skill learning. Psychol. Rev. 82(4):225–260, 1975.

    Article  Google Scholar 

  42. Steadman, J., N. Donaldson, and L. Kalra. A randomized controlled trial of an enhanced balance training program to improve mobility and reduce falls in elderly patients. J. Am. Geriatr. Soc. 51(6):847–852, 2003.

    Article  PubMed  Google Scholar 

  43. Sterling, D. A., J. A. O’Connor, and J. Bonadies. Geriatric falls: injury severity is high and disproportionate to mechanism. J. Trauma 50(1):116–119, 2001.

    Article  PubMed  CAS  Google Scholar 

  44. Strandberg, L., and H. Lanshammar. The dynamics of slipping accidents. J. Occup. Accid. 3(3):153–162, 1981.

    Article  Google Scholar 

  45. Tang, P., M. H. Woollacott, and R. K. Y. Chong. Control of reactive balance adjustments in perturbed human walking: roles of proximal and distal postural muscle activity. Exp. Brain Res. 119(2):141–152, 1998.

    Article  PubMed  CAS  Google Scholar 

  46. Tjernstrom, F., P. A. Fransson, A. Hafstrom, and M. Magnusson. Adaptation of postural control to perturbations—a process that initiates long-term motor memory. Gait Posture 15(1):75–82, 2002.

    Article  PubMed  CAS  Google Scholar 

  47. Wang, T. Y., T. Bhatt, F. Yang, and Y. C. Pai. Generalization of motor adaptation to repeated-slip perturbation across tasks. Neuroscience 180:85–95, 2011.

    Article  PubMed  CAS  Google Scholar 

  48. Weber, K. D., W. A. Fletcher, C. R. Gordon, G. M. Jones, and E. W. Block. Motor learning in the “podokinetic” system and its role in spatial orientation during locomotion. Exp. Brain Res. 120(3):377–385, 1998.

    Article  PubMed  CAS  Google Scholar 

  49. Woo, J., A. Hong, E. Lau, and H. Lynn. A randomised controlled trial of Tai Chi and resistance exercise on bone health, muscle strength and balance in community-living elderly people. Age Ageing 36(3):262–268, 2007.

    Article  PubMed  Google Scholar 

  50. You, J.-Y., Y.-L. Chou, C.-J. Lin, and F.-C. Su. Effect of slip on movement of body center of mass relative to base of support. Clin. Biomech. 16(2):167–173, 2001.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the NSF (grant #CBET-0756058) and NIOSH (grant #CDC/NIOSH-R01-OH009222). Additionally, supported by L30 AG022963-04/NIH HHS/United States.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thurmon E. Lockhart.

Additional information

Associate Editor Catherine Disselhorst-Klug oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parijat, P., Lockhart, T.E. Effects of Moveable Platform Training in Preventing Slip-Induced Falls in Older Adults. Ann Biomed Eng 40, 1111–1121 (2012). https://doi.org/10.1007/s10439-011-0477-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0477-0

Keywords

Navigation