Skip to main content
Log in

Low-Intensity Pulsed Ultrasound Modulates Shear Stress Induced PGHS-2 Expression and PGE2 Synthesis in MLO-Y4 Osteocyte-Like Cells

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Fluid shear stress (SS) has been shown to be a prevailing physiological stimulus in the regulation of bone cell metabolism and so are the exogenous biomechanical forces, like ultrasound (US) and vibration. The purpose of this study is to elaborate the interplay of laminar fluid SS with low-intensity pulsed US in the regulation of prostaglandin H synthase 2 (PGHS-2) and prostaglandin E2 (PGE2). Murine long bone osteocyte-like (MLO-Y4) cells were exposed to various regimes of US (1.5 Hz, 30 mW/cm2) and SS (19 dyn/cm2) alone and sequentially. Changes in PGHS-2 gene expression levels were quantified at 3 and 24 h using real-time RT-PCR. PGE2 levels in the culture media were measured using enzyme immunoassay at 3 and 24 h. PGE2 levels significantly increased after exposure to SS for 3 and 24 h by 2.17 ± 0.02 and 5.47 ± 0.42-fold, respectively, compared to control cells. A 20 min US treatment prior to SS significantly increased SS PGE2 levels 2.95 ± 0.18 and 2.90 ± 0.50-fold at 3 and 24 h, respectively. US also significantly increased PGHS-2 mRNA levels in cells exposed to SS. SS caused a 2.74 ± 0.49-fold increase in PGHS-2 mRNA levels at 3 h and a significant 3.70 ± 0.25-fold increase at 24 h relative to control. A 20 min US treatment caused 1.35 ± 0.49 and 2.44 ± 0.82-fold increase in PGHS-2 mRNA levels in cells exposed to SS at 3 and 24 h, respectively. These results indicate that combining US with SS may have a more anabolic benefit for bone tissue than either stimulus alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Ajubi, N. E., J. Klein-Nulend, M. J. Alblas, E. H. Burger, and P. J. Nijweide. Signal transduction pathways involved in fluid flow-induced PGE2 production by cultured osteocytes. Am. J. Physiol. 276(1 Pt 1):E171–E178, 1999.

    CAS  PubMed  Google Scholar 

  2. Armour, K. E., K. J. Armour, M. E. Gallagher, A. Godecke, M. H. Helfrich, D. M. Reid, and S. H. Ralston. Defective bone formation and anabolic response to exogenous estrogen in mice with targeted disruption of endothelial nitric oxide synthase. Endocrinology 142(2):760–766, 2001.

    Article  CAS  PubMed  Google Scholar 

  3. Bacabac, R. G., T. H. Smit, J. J. Van Loon, B. Z. Doulabi, M. Helder, and J. Klein-Nulend. Bone cell responses to high-frequency vibration stress: does the nucleus oscillate within the cytoplasm? FASEB J. 20(7):858–864, 2006.

    Article  CAS  PubMed  Google Scholar 

  4. Bakker, A. D., K. Soejima, J. Klein-Nulend, and E. H. Burger. The production of nitric oxide and prostaglandin E(2) by primary bone cells is shear stress dependent. J. Biomech. 34(5):671–677, 2001.

    Article  CAS  PubMed  Google Scholar 

  5. Berthod, F., D. Hayek, O. Damour, and C. Collombel. Collagen synthesis by fibroblasts cultured within a collagen sponge. Biomaterials 14(10):749–754, 1993.

    Article  CAS  PubMed  Google Scholar 

  6. Bottlang, M., M. Simnacher, H. Schmitt, R. A. Brand, and L. Claes. A cell strain system for small homogeneous strain applications. Biomed. Tech. (Berl) 42(11):305–309, 1997.

    Article  CAS  Google Scholar 

  7. Brown, T. D., D. R. Pedersen, M. L. Gray, R. A. Brand, and C. T. Rubin. Toward an identification of mechanical parameters initiating periosteal remodeling: a combined experimental and analytic approach. J. Biomech. 23(9):893–905, 1990.

    Article  CAS  PubMed  Google Scholar 

  8. Burger, E. H., and J. Klein-Nulend. Microgravity and bone cell mechanosensitivity. Bone 22(5 Suppl):127S–130S, 1998.

    Article  CAS  PubMed  Google Scholar 

  9. Burger, E. H., and J. Klein-Nulend. Mechanotransduction in bone—role of the lacuno-canalicular network. FASEB J. 13(Suppl):S101–S112, 1999.

    CAS  PubMed  Google Scholar 

  10. Casser-Bette, M., A. B. Murray, E. I. Closs, V. Erfle, and J. Schmidt. Bone formation by osteoblast-like cells in a three-dimensional cell culture. Calcif. Tissue Int. 46(1):46–56, 1990.

    Article  CAS  PubMed  Google Scholar 

  11. Chan, C. W., L. Qin, K. M. Lee, M. Zhang, J. C. Cheng, and K. S. Leung. Low intensity pulsed ultrasound accelerated bone remodeling during consolidation stage of distraction osteogenesis. J. Orthop. Res. 24(2):263–270, 2006.

    Article  PubMed  Google Scholar 

  12. Cheng, B., Y. Kato, S. Zhao, J. Luo, E. Sprague, L. F. Bonewald, and J. X. Jiang. PGE2 is essential for gap junction-mediated intercellular communication between osteocyte-like MLO-Y4 cells in response to mechanical strain. Endocrinology 142(8):3464–3473, 2001.

    Article  CAS  PubMed  Google Scholar 

  13. Cook, S. D., S. L. Salkeld, L. P. Mse Patron, J. P. Ryaby, and T. S. Whitecloud. Low-intensity pulsed ultrasound improves spinal fusion. Spine J. 1(4):246–254, 2001.

    Article  CAS  PubMed  Google Scholar 

  14. Cook, S. D., S. L. Salkeld, L. S. Popich-Patron, J. P. Ryaby, D. G. Jones, and R. L. Barrack. Improved cartilage repair after treatment with low-intensity pulsed ultrasound. Clin. Orthop. 391(Suppl):S231–S243, 2001.

    PubMed  Google Scholar 

  15. Cowin, S. C., L. Moss-Salentijn, and M. L. Moss. Candidates for the mechanosensory system in bone. J. Biomech. Eng. 113(2):191–197, 1991.

    Article  CAS  PubMed  Google Scholar 

  16. Cowin, S. C., S. Weinbaum, and Yu. Zeng. A case for bone canaliculi as the anatomical site of strain generated potentials. J. Biomech. 28(11):1281–1296, 1995.

    Article  CAS  PubMed  Google Scholar 

  17. Dassouli, A., J.-C. Sulpice, S. Roux, and B. Crozatier. Stretch-induced inositol trisphosphate and tetrakisphosphate production in rat cardiomyocytes. J. Mol. Cell. Cardiol. 25(8):973–982, 1993.

    Article  CAS  PubMed  Google Scholar 

  18. Dillaman, R. M., R. D. Roer, and D. M. Gay. Fluid movement in bone: theoretical and empirical. J. Biomech. 24(Supplement 1):163–177, 1991.

    Article  PubMed  Google Scholar 

  19. Donahue, S. W., C. R. Jacobs, and H. J. Donahue. Flow-induced calcium oscillations in rat osteoblasts are age, loading frequency, and shear stress dependent. Am. J. Physiol. Cell Physiol. 281(5):C1635–C1641, 2001.

    CAS  PubMed  Google Scholar 

  20. Donahue, T. L., T. R. Haut, C. E. Yellowley, H. J. Donahue, and C. R. Jacobs. Mechanosensitivity of bone cells to oscillating fluid flow induced shear stress may be modulated by chemotransport. J. Biomech. 36(9):1363–1371, 2003.

    Article  PubMed  Google Scholar 

  21. Duarte, L. R. The stimulation of bone growth by ultrasound. Arch. Orthop. Trauma Surg. 101(3):153–159, 1983.

    Article  CAS  PubMed  Google Scholar 

  22. Dyson, M., and J. Suckling. Stimulation of tissue repair by ultrasound: a survey of the mechanisms involved. Physiotherapy 64(4):105–108, 1978.

    CAS  PubMed  Google Scholar 

  23. Ebisawa, K., K. Hata, K. Okada, K. Kimata, M. Ueda, S. Torii, and H. Watanabe. Ultrasound enhances transforming growth factor beta-mediated chondrocyte differentiation of human mesenchymal stem cells. Tissue Eng. 10(5–6):921–929, 2004.

    Article  CAS  PubMed  Google Scholar 

  24. El-Bialy, T. H., T. J. Royston, R. L. Magin, C. A. Evans, M. Zaki Ael, and L. A. Frizzell. The effect of pulsed ultrasound on mandibular distraction. Ann. Biomed. Eng. 30(10):1251–1261, 2002.

    Article  PubMed  Google Scholar 

  25. El-Mowafi, H., and M. Mohsen. The effect of low-intensity pulsed ultrasound on callus maturation in tibial distraction osteogenesis. Int. Orthop. 29(2):121–124, 2005.

    Article  PubMed  Google Scholar 

  26. Frangos, J. A., L. V. McIntire, and S. G. Eskin. Shear stress induced stimulation of mammalian cell metabolism. Biotechnol. Bioeng. 32(8):1053–1060, 1988.

    Article  CAS  PubMed  Google Scholar 

  27. Glazer, P. A., M. R. Heilmann, J. C. Lotz, and D. S. Bradford. Use of ultrasound in spinal arthrodesis. A rabbit model. Spine 23(10):1142–1148, 1998.

    Article  CAS  PubMed  Google Scholar 

  28. Gluhak-Heinrich, J., S. Gu, D. Pavlin, and J. X. Jiang. Mechanical loading stimulates expression of connexin 43 in alveolar bone cells in the tooth movement model. Cell Commun. Adhes. 13(1–2):115–125, 2006.

    Article  CAS  PubMed  Google Scholar 

  29. Gudi, S., I. Huvar, C. R. White, N. L. McKnight, N. Dusserre, G. R. Boss, and J. A. Frangos. Rapid activation of Ras by fluid flow is mediated by GΑq and GΒ[Gamma] subunits of heterotrimeric G proteins in human endothelial cells. Arterioscler. Thromb. Vasc. Biol. 23(6):994–1000, 2003.

    Article  CAS  PubMed  Google Scholar 

  30. Gum, S. L., G. K. Reddy, L. Stehno-Bittel, and C. S. Enwemeka. Combined ultrasound, electrical stimulation, and laser promote collagen synthesis with moderate changes in tendon biomechanics. Am. J. Phys. Med. Rehabil. 76(4):288–296, 1997.

    Article  CAS  PubMed  Google Scholar 

  31. Hadjiargyrou, M., K. McLeod, J. P. Ryaby, and C. Rubin. Enhancement of fracture healing by low intensity ultrasound. Clin. Orthop. Relat. Res. 355(Suppl):S216–S229, 1998.

    Article  PubMed  Google Scholar 

  32. Hamajima, S., K. Hiratsuka, M. Kiyama-Kishikawa, T. Tagawa, M. Kawahara, M. Ohta, H. Sasahara, and Y. Abiko. Effect of low-level laser irradiation on osteoglycin gene expression in osteoblasts. Lasers Med. Sci. 18(2):78–82, 2003.

    Article  CAS  PubMed  Google Scholar 

  33. Harris, M. The conservative management of osteoradionecrosis of the mandible with ultrasound therapy. Br. J. Oral Maxillofac. Surg. 30(5):313–318, 1992.

    Article  CAS  PubMed  Google Scholar 

  34. Harter, L. V., K. A. Hruska, and R. L. Duncan. Human osteoblast-like cells respond to mechanical strain with increased bone matrix protein production independent of hormonal regulation. Endocrinology 136(2):528–535, 1995.

    Article  CAS  PubMed  Google Scholar 

  35. Heckman, J. D., J. P. Ryaby, J. McCabe, J. J. Frey, and R. F. Kilcoyne. Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J. Bone Joint Surg. Am. 76(1):26–34, 1994.

    CAS  PubMed  Google Scholar 

  36. Huang, M. H., H. J. Ding, C. Y. Chai, Y. F. Huang, and R. C. Yang. Effects of sonication on articular cartilage in experimental osteoarthritis. J. Rheumatol. 24(10):1978–1984, 1997.

    CAS  PubMed  Google Scholar 

  37. Hughes-Fulford, M., R. Tjandrawinata, J. Fitzgerald, K. Gasuad, and V. Gilbertson. Effects of microgravity on osteoblast growth. Gravit. Space Biol. Bull. 11(2):51–60, 1998.

    CAS  PubMed  Google Scholar 

  38. Jacobs, C. R., C. E. Yellowley, B. R. Davis, Z. Zhou, J. M. Cimbala, and H. J. Donahue. Differential effect of steady versus oscillating flow on bone cells. J. Biomech. 31(11):969–976, 1998.

    Article  CAS  PubMed  Google Scholar 

  39. Kacena, M. A., P. Todd, and W. J. Landis. Osteoblasts subjected to spaceflight and simulated space shuttle launch conditions. In Vitro Cell Dev. Biol. Anim. 39(10):454–459, 2003.

    Article  PubMed  Google Scholar 

  40. Kato, Y., J. J. Windle, B. A. Koop, G. R. Mundy, and L. F. Bonewald. Establishment of an osteocyte-like cell line, MLO-Y4. J. Bone Miner. Res. 12(12):2014–2023, 1997.

    Article  CAS  PubMed  Google Scholar 

  41. Keanini, R. G., R. D. Roer, and R. M. Dillaman. A theoretical model of circulatory interstitial fluid flow and species transport within porous cortical bone. J. Biomech. 28(8):901–914, 1995.

    Article  CAS  PubMed  Google Scholar 

  42. Klein-Nulend, J., E. H. Burger, C. M. Semeins, L. G. Raisz, and C. C. Pilbeam. Pulsating fluid flow stimulates prostaglandin release and inducible prostaglandin G/H synthase mRNA expression in primary mouse bone cells. J. Bone Miner. Res. 12(1):45–51, 1997.

    Article  CAS  PubMed  Google Scholar 

  43. Kreke, M. R., L. A. Sharp, Y. W. Lee, and A. S. Goldstein. Effect of intermittent shear stress on mechanotransductive signaling and osteoblastic differentiation of bone marrow stromal cells. Tissue Eng. A 14(4):529–537, 2008.

    Article  CAS  Google Scholar 

  44. Kristiansen, T. K., J. P. Ryaby, J. McCabe, J. J. Frey, and L. R. Roe. Accelerated healing of distal radial fractures with the use of specific, low-intensity ultrasound. A multicenter, prospective, randomized, double-blind, placebo-controlled study. J. Bone Joint Surg. Am. 79(7):961–973, 1997.

    CAS  PubMed  Google Scholar 

  45. Kufahl, R. H., and S. Saha. A theoretical model for stress-generated fluid flow in the canaliculi-lacunae network in bone tissue. J. Biomech. 23(2):171–180, 1990.

    Article  CAS  PubMed  Google Scholar 

  46. Lavandero, S., G. Cartagena, E. Guarda, R. Corbalan, I. Godoy, M. Sapag-Hagar, and J. E. Jalil. Changes in cyclic AMP dependent protein kinase and active stiffness in the rat volume overload model of heart hypertrophy. Cardiovasc. Res. 27(9):1634–1638, 1993.

    Article  CAS  PubMed  Google Scholar 

  47. Lean, J. M., C. J. Jagger, T. J. Chambers, and J. W. Chow. Increased insulin-like growth factor I mRNA expression in rat osteocytes in response to mechanical stimulation. Am. J. Physiol. 268(2 Pt 1):E318–E327, 1995.

    CAS  PubMed  Google Scholar 

  48. McAllister, T. N., and J. A. Frangos. Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways. J. Bone Miner. Res. 14(6):930–936, 1999.

    Article  CAS  PubMed  Google Scholar 

  49. McCormick, S. M., V. Saini, Y. Yazicioglu, Z. N. Demou, and T. J. Royston. Interdependence of pulsed ultrasound and shear stress effects on cell morphology and gene expression. Ann. Biomed. Eng. 34(3):436–445, 2006.

    Article  PubMed  Google Scholar 

  50. Mourad, P. D., D. A. Lazar, F. P. Curra, B. C. Mohr, K. C. Andrus, A. M. Avellino, L. D. McNutt, L. A. Crum, and M. Kliot. Ultrasound accelerates functional recovery after peripheral nerve damage. Neurosurgery 48(5):1136–1140, 2001.

    Article  CAS  PubMed  Google Scholar 

  51. Myrdycz, A., D. Callens, K. Kot, F. Monchau, E. Radziszewski, A. Lefebvre, and H. F. Hildebrand. Cells under stress: a non-destructive evaluation of adhesion by ultrasounds. Biomol. Eng. 19(2–6):219–225, 2002.

    Article  CAS  PubMed  Google Scholar 

  52. Owan, I., D. B. Burr, C. H. Turner, J. Qiu, Y. Tu, J. E. Onyia, and R. L. Duncan. Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain. Am. J. Physiol. 273(3 Pt 1):C810–C815, 1997.

    CAS  PubMed  Google Scholar 

  53. Ozawa, Y., N. Shimizu, G. Kariya, and Y. Abiko. Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 22(4):347–354, 1998.

    Article  CAS  PubMed  Google Scholar 

  54. Parvizi, J., C. C. Wu, D. G. Lewallen, J. F. Greenleaf, and M. E. Bolander. Low-intensity ultrasound stimulates proteoglycan synthesis in rat chondrocytes by increasing aggrecan gene expression. J. Orthop. Res. 17(4):488–494, 1999.

    Article  CAS  PubMed  Google Scholar 

  55. Parvizi, J., V. Parpura, J. F. Greenleaf, and M. E. Bolander. Calcium signaling is required for ultrasound-stimulated aggrecan synthesis by rat chondrocytes. J. Orthop. Res. 20(1):51–57, 2002.

    Article  CAS  PubMed  Google Scholar 

  56. Piekarski, K., and M. Munro. Transport mechanism operating between blood supply and osteocytes in long bones. Nature (London) 269(5623):80–82, 1977.

    Article  CAS  Google Scholar 

  57. Pilla, A. A., M. A. Mont, P. R. Nasser, S. A. Khan, M. Figueiredo, J. J. Kaufman, and R. S. Siffert. Non-invasive low-intensity pulsed ultrasound accelerates bone healing in the rabbit. J. Orthop. Trauma 4(3):246–253, 1990.

    Article  CAS  PubMed  Google Scholar 

  58. Pounder, N. M., and A. J. Harrison. Low intensity pulsed ultrasound for fracture healing: a review of the clinical evidence and the associated biological mechanism of action. Ultrasonics 48(4):330–338, 2008.

    Article  CAS  PubMed  Google Scholar 

  59. Reher, P., M. Harris, M. Whiteman, H. K. Hai, and S. Meghji. Ultrasound stimulates nitric oxide and prostaglandin E2 production by human osteoblasts. Bone 31(1):236–241, 2002.

    Article  CAS  PubMed  Google Scholar 

  60. Reich, K. M., and J. A. Frangos. Effect of flow on prostaglandin E2 and inositol trisphosphate levels in osteoblasts. Am. J. Physiol. 261(3 Pt 1):C428–C432, 1991.

    CAS  PubMed  Google Scholar 

  61. Robertson, V. J., and K. G. Baker. A review of therapeutic ultrasound: effectiveness studies. Phys. Ther. 81(7):1339–1350, 2001.

    CAS  PubMed  Google Scholar 

  62. Roebroeck, M. E., J. Dekker, and R. A. Oostendorp. The use of therapeutic ultrasound by physical therapists in Dutch primary health care. Phys. Ther. 78(5):470–478, 1998.

    CAS  PubMed  Google Scholar 

  63. Rubin, J., T. C. Murphy, X. Fan, M. Goldschmidt, and W. R. Taylor. Activation of extracellular signal-regulated kinase is involved in mechanical strain inhibition of RANKL expression in bone stromal cells. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 17(8):1452–1460, 2002.

    CAS  Google Scholar 

  64. Rubin, J., C. Rubin, and C. R. Jacobs. Molecular pathways mediating mechanical signaling in bone. Gene 367:1–16, 2006.

    Article  CAS  PubMed  Google Scholar 

  65. Saini, N. S., K. S. Roy, P. S. Bansal, B. Singh, and P. S. Simran. A preliminary study on the effect of ultrasound therapy on the healing of surgically severed achilles tendons in five dogs. J. Vet. Med. A Physiol. Pathol. Clin. Med. 49(6):321–328, 2002.

    CAS  PubMed  Google Scholar 

  66. Saini, V., Y. Yazicioglu, T. J. Royston, and S. M. McCormick. Effect of vibro-acoustic stimuli and shear stress alone and in combination on gene expression. In: Transactions of Biomedical Engineering Society, Nashville, TN (10/1–4):9.P2.74, 2003.

  67. Saini, V., Y. Yazicioglu, Z. N. Demou, T. J. Royston, and S. M. McCormick. Interdependence of low intensity pulsed ultrasound and laminar fluid shear stress effects on SaOS-2 cell morphology and BMP-4 expression. Trans. Orthop. Res. Soc. 31:1018, 2006.

    Google Scholar 

  68. Schortinghuis, J., A. L. Bronckers, B. Stegenga, G. M. Raghoebar, and L. G. de Bont. Ultrasound to stimulate early bone formation in a distraction gap: a double blind randomised clinical pilot trial in the edentulous mandible. Arch. Oral Biol. 50(4):411–420, 2005.

    Article  PubMed  Google Scholar 

  69. Sharp, L. A., Y. W. Lee, and A. S. Goldstein. Effect of low-frequency pulsatile flow on expression of osteoblastic genes by bone marrow stromal cells. Ann. Biomed. Eng. 37(3):445–453, 2009.

    Article  PubMed  Google Scholar 

  70. Sikavitsas, V. I., G. N. Bancroft, H. L. Holtorf, J. A. Jansen, and A. G. Mikos. Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. Proc. Natl. Acad. Sci. USA 100(25):14683–14688, 2003.

    Article  CAS  PubMed  Google Scholar 

  71. Smalt, R., F. T. Mitchell, R. L. Howard, and T. J. Chambers. Mechanotransduction in bone cells: induction of nitric oxide and prostaglandin synthesis by fluid shear stress, but not by mechanical strain. Adv. Exp. Med. Biol. 433:311–314, 1997.

    CAS  PubMed  Google Scholar 

  72. Spadaro, J. A., and S. A. Albanese. Application of low-intensity ultrasound to growing bone in rats. Ultrasound Med. Biol. 24(4):567–573, 1998.

    Article  CAS  PubMed  Google Scholar 

  73. Sun, J. S., R. C. Hong, W. H. Chang, L. T. Chen, F. H. Lin, and H. C. Liu. In vitro effects of low-intensity ultrasound stimulation on the bone cells. J. Biomed. Mater. Res. 57(3):449–456, 2001.

    Article  CAS  PubMed  Google Scholar 

  74. Swan, C. C., R. S. Lakes, R. A. Brand, and K. J. Stewart. Micromechanically based poroelastic modeling of fluid flow in Haversian bone. J. Biomech. Eng. 125(1):25–37, 2003.

    Article  CAS  PubMed  Google Scholar 

  75. Takakura, Y., N. Matsui, S. Yoshiya, H. Fujioka, H. Muratsu, M. Tsunoda, and M. Kurosaka. Low-intensity pulsed ultrasound enhances early healing of medial collateral ligament injuries in rats. J. Ultrasound Med. 21(3):283–288, 2002.

    PubMed  Google Scholar 

  76. Takikawa, S., N. Matsui, T. Kokubu, M. Tsunoda, H. Fujioka, K. Mizuno, and Y. Azuma. Low-intensity pulsed ultrasound initiates bone healing in rat nonunion fracture model. J. Ultrasound Med. 20(3):197–205, 2001.

    CAS  PubMed  Google Scholar 

  77. Tanaka, S. M., J. Li, R. L. Duncan, H. Yokota, D. B. Burr, and C. H. Turner. Effects of broad frequency vibration on cultured osteoblasts. J. Biomech. 36(1):73–80, 2003.

    Article  PubMed  Google Scholar 

  78. Tjandrawinata, R. R., V. L. Vincent, and M. Hughes-Fulford. Vibrational force alters mRNA expression in osteoblasts. FASEB J. 11(6):493–497, 1997.

    CAS  PubMed  Google Scholar 

  79. Uglow, M. G., R. A. Peat, M. S. Hile, L. E. Bilston, E. J. Smith, and D. G. Little. Low-intensity ultrasound stimulation in distraction osteogenesis in rabbits. Clin. Orthop. Relat. Res. 417:303–312, 2003.

    PubMed  Google Scholar 

  80. Walker, L. M., S. J. Publicover, M. R. Preston, M. A. Said Ahmed, and A. J. El Haj. Calcium-channel activation and matrix protein upregulation in bone cells in response to mechanical strain. J. Cell Biochem. 79(4):648–661, 2000.

    Article  CAS  PubMed  Google Scholar 

  81. Wang, F. S., K. D. Yang, Y. R. Kuo, C. J. Wang, S. M. Sheen-Chen, H. C. Huang, and Y. J. Chen. Temporal and spatial expression of bone morphogenetic proteins in extracorporeal shock wave-promoted healing of segmental defect. Bone 32(4):387–396, 2003.

    Article  CAS  PubMed  Google Scholar 

  82. Warden, S. J., K. L. Bennell, B. Matthews, D. J. Brown, J. M. McMeeken, and J. D. Wark. Efficacy of low-intensity pulsed ultrasound in the prevention of osteoporosis following spinal cord injury. Bone 29(5):431–436, 2001.

    Article  CAS  PubMed  Google Scholar 

  83. Weinbaum, S., S. C. Cowin, and Y. Zeng. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27(3):339–360, 1994.

    Article  CAS  PubMed  Google Scholar 

  84. Westbroek, I., N. E. Ajubi, M. J. Alblas, C. M. Semeins, J. Klein-Nulend, E. H. Burger, and P. J. Nijweide. Differential stimulation of prostaglandin G/H synthase-2 in osteocytes and other osteogenic cells by pulsating fluid flow. Biochem. Biophys. Res. Commun. 268(2):414–419, 2000.

    Article  CAS  PubMed  Google Scholar 

  85. Wu, S., Y. Kawahara, T. Manabe, K. Ogawa, M. Matsumoto, A. Sasaki, and L. Yuge. Low-intensity pulsed ultrasound accelerates osteoblast differentiation and promotes bone formation in an osteoporosis rat model. Pathobiology 76(3):99–107, 2009.

    Article  PubMed  Google Scholar 

  86. Xing, W., D. Baylink, C. Kesavan, Y. Hu, S. Kapoor, R. B. Chadwick, and S. Mohan. Global gene expression analysis in the bones reveals involvement of several novel genes and pathways in mediating an anabolic response of mechanical loading in mice. J. Cell Biochem. 96(5):1049–1060, 2005.

    Article  CAS  PubMed  Google Scholar 

  87. Young, S. R., R. Gerard-O’Riley, J. B. Kim, and F. M. Pavalko. Focal adhesion kinase is important for fluid shear stress-induced mechanotransduction in osteoblasts. J. Bone Miner. Res. 24(3):411–424, 2009.

    Article  CAS  PubMed  Google Scholar 

  88. Zhuang, H., W. Wang, A. D. Tahernia, C. L. Levitz, W. T. Luchetti, and C. T. Brighton. Mechanical strain-induced proliferation of osteoblastic cells parallels increased TGF-[beta]1 mRNA. Biochem. Biophys. Res. Commun. 229(2):449–453, 1996.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Smith and Nephew for donating Exogen SAFHS 2000 ultrasound devices used in these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Saini.

Additional information

Associate Editor Mona Kamal Marei oversaw the review of this article.

This work was conducted at the Cell and Tissue Engineering Laboratories, University of Illinois at Chicago.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saini, V., Yadav, S. & McCormick, S. Low-Intensity Pulsed Ultrasound Modulates Shear Stress Induced PGHS-2 Expression and PGE2 Synthesis in MLO-Y4 Osteocyte-Like Cells. Ann Biomed Eng 39, 378–393 (2011). https://doi.org/10.1007/s10439-010-0156-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0156-6

Keywords

Navigation