Skip to main content

Advertisement

Log in

Automatic Detection of Microemboli During Percutaneous Coronary Interventions

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The objective of this study was to develop an analysis method for the automatic detection of intracoronary microemboli triggered high intensity signals (HITS) during percutaneous coronary interventions (PCI). The recorded ultrasonic Doppler velocity spectra from an intracoronary ultrasonic guide-wire were decomposed into 13 wavelet scales applying the continuous wavelet transform. From 7 wavelet scales which were most suitable for a differentiation between HITS and pulsatile flow, envelopes were calculated and combined to improve the HITS-to-background noise ratio. For different intensity thresholds the resulting number of HITS was automatically counted and compared with the number estimated by experienced observers. In a first validation trial HITS were detected within a simplified in vitro model with a sensitivity of 89.2% and a positive predictive value of 87.6%. In a following clinical study 211 HITS from 18 patients during PCI were counted manually by the observers. With the developed wavelet-based method 189 HITS were correctly detected (sensitivity of 89.6%, positive predictive value of 85.5%). The introduced new method automatically detects intracoronary HITS for the first time with a reliable accuracy. This may support further studies evaluating the incidence and consequences of coronary microembolization during coronary interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

FIR:

Finite impulse response filter

fn:

False negative

fp:

False positive

HITS:

High intensity signals

MPC:

Medical personal computer

PCI:

Percutaneous coronary intervention

PPV:

Positive predictive value

SENS:

Sensitivity

tp:

True positive

References

  1. Aydin N., Marvasti F., Markus H. S. (2004) Embolic Doppler ultrasound signal detection using discrete wavelet transform. IEEE Trans. Inf. Technol. Biomed. 8(2):182–190

    Article  PubMed  Google Scholar 

  2. Aydin N., Padayachee S., Markus H. S. (1999) The use of the wavelet transform to describe embolic signals. Ultrasound Med. Biol. 25(6):953–958

    Article  PubMed  CAS  Google Scholar 

  3. Bahrmann P., Figulla H. R., Wagner M., Ferrari M., Voss A., Werner G. S. (2005) Detection of coronary microembolisation by Doppler ultrasound during percutaneous coronary interventions. Heart 91(9):1186–1192

    Article  PubMed  CAS  Google Scholar 

  4. Bahrmann P., Werner G. S., Heusch G., Ferrari M., Poerner T. C., Voss A., Figulla H. R. (2007) Detection of coronary microembolization by Doppler ultrasound in patients with stable angina pectoris undergoing elective percutaneous coronary interventions. Circulation 115(5):600–608

    Article  PubMed  Google Scholar 

  5. Brucher R., Russell D. (2002) Automatic online embolus detection and artifact rejection with the first multifrequency transcranial Doppler. Stroke 33(8):1969–1974

    Article  PubMed  Google Scholar 

  6. Carlino M., De Gregorio J., Di Mario C. (1999) Prevention of distal embolization during saphenous vein graft lesion angioplasty. Experience with a new temporary occlusion and aspiration system. Circulation. 99:3221–3223

    PubMed  CAS  Google Scholar 

  7. Consensus Committee of the Ninth International Cerebral Hemodynamic Symposium (1995) Basic identification criteria of Doppler microembolic signals. Stroke 26:1123

    Google Scholar 

  8. Devuyst G., Vesin J. M., Despland P. A., Bogousslavsky J. (2002) The matching pursuit: a new method of characterizing microembolic signals? Ultrasound Med. Biol. 26(6):1051–1056

    Article  Google Scholar 

  9. Dittrich, R., Ritter M. A., Kaps M., Siebler M., Lees K., Larrue V., Nabavi D. G., Ringelstein E. B., Markus H. S., Droste D. W. (2006) The use of embolic signal detection in multicenter trials to evaluate antiplatelet efficacy: signal analysis and quality control mechanisms in the CARESS (Clopidogrel and Aspirin for Reduction of Emboli in Symptomatic carotid Stenosis) trial. Stroke 37(4):1065–1069

    Article  PubMed  Google Scholar 

  10. Droste D. W., Hagedorn G., Notzold A., Siemens H. J., Sievers H. H., Kaps M. (1997) Bigated transcranial Doppler for the detection of clinically silent circulating emboli in normal persons and patients with prosthetic cardiac valves. Stroke 28(3):588–592

    PubMed  CAS  Google Scholar 

  11. Eicke B. M., Barth V., Kukowski B. (1996) Cardiac microembolism: prevalence and clinical outcome. J. Neurol. Sci. 136:143–147

    Article  PubMed  CAS  Google Scholar 

  12. Fan L., Boni E., Tortoli P., Evans D. H. (2006) Multigate transcranial Doppler ultrasound system with real-time embolic signal identification and archival. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 53(10):1853–1861

    Article  PubMed  Google Scholar 

  13. Fan L., Evans D. H. (1994) A real-time and fine resolution analyser used to estimate the instantaneous energy distribution of Doppler signals. Ultrasound Med Biol. 20(5):445–462

    Article  PubMed  CAS  Google Scholar 

  14. Georgiadis D., Goeke J., Hill M., Konig M., Nabavi D. G., Stogbauer F., Zunker P., Ringelstein E. B. (1996) A novel technique for identification of doppler microembolic signals based on the coincidence method: in vitro and in vivo evaluation. Stroke. 27(4):683–686

    PubMed  CAS  Google Scholar 

  15. Georgiadis, D., Uhlmann F., Lindner A., Zierz S. (2000) Differentiation between true microembolic signals and artefacts using an arbitrary sample volume. Ultrasound Med. Biol. 26(3):493–496

    Article  PubMed  CAS  Google Scholar 

  16. Kemeny V., Droste D. W., Hermes S., Nabavi D. G., Schulte-Altedorneburg G., Siebler M., Ringelstein E. B. (1999) Automatic embolus detection by a neural network. Stroke 30(4):807–810

    PubMed  CAS  Google Scholar 

  17. Mallat S. G. (1989) A theory for multiresolution signal decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 11(7):674–693

    Article  Google Scholar 

  18. Markus H. S. (2000) Monitoring embolism in real time. Circulation 102:826–828

    PubMed  CAS  Google Scholar 

  19. Markus H. S., Brown M. M. (1993) Differentiation between different pathological cerebral embolic materials using transcranial Doppler in an in vitro model. Stroke. 24(1):1–5

    PubMed  CAS  Google Scholar 

  20. Markus H. S., Loh A., Brown M. M. (1993) Computerized detection of cerebral emboli and discrimination from artifact using Doppler ultrasound. Stroke. 24(11):1667–1672

    PubMed  CAS  Google Scholar 

  21. Markus H. S., Tegeler C. H. (1995) Experimental aspects of high-intensity transient signals in the detection of emboli. J. Clin. Ultrasound 23(2):81–87

    Article  PubMed  CAS  Google Scholar 

  22. Moehring M. A., Spencer M. P. (2002) Power M-mode Doppler (PMD) for observing cerebral blood flow and tracking emboli. Ultrasound Med. Biol. 28(1):49–57

    Article  PubMed  Google Scholar 

  23. Okamura A., Ito H., Iwakura K., Kawano S., Inoue K., Maekawa Y., Ogihara T., Fujii K. (2005) Detection of embolic particles with the Doppler guide wire during coronary intervention in patients with acute myocardial infarction: efficacy of distal protection device. J. Am. Coll. Cardiol. 45(2):212–215

    Article  PubMed  Google Scholar 

  24. Okamura A., Ito H., Iwakura K., Kawano S., Kurotobi T., Date M., Inoue K., Ogihara T., Fujii K. (2007) Detection and quantification of embolic particles during percutaneous coronary intervention to stable plaque: It correlates to coronary flow dynamics and myocardial damage. Catheter. Cardiovasc. Interv. 69(3):425–431

    Article  PubMed  Google Scholar 

  25. Russell D., Madden K. P., Clark W. M. (1991) Detection of arterial emboli using Doppler ultrasound in rabbits. Stroke 22:253–258

    PubMed  CAS  Google Scholar 

  26. Russell, D., Madden K. P., Clark W. M., Sandset P. M., Zivin J. A. (1991) Detection of arterial emboli using Doppler ultrasound in rabbits. Stroke 22(2):253–258

    PubMed  CAS  Google Scholar 

  27. Saber R. S., Edwards W. D., Bailey K. R. (1993) Coronary embolization after balloon angioplasty or thrombolytic therapy: an autopsy study of 32 cases. J. Am. Coll. Cardiol. 22:1283–1288

    Article  PubMed  CAS  Google Scholar 

  28. Siebler M., Rose G., Sitzer M., Bender A., Steinmetz H. (1994) Real-time identification of cerebral microemboli with US feature detection by a neural network. Radiology 192(3):739–742

    PubMed  CAS  Google Scholar 

  29. Spencer M. P., Moehring M. A., Jesurum J. (2004) Gram-mode transcranial Doppler for diagnosis of patent foramen ovale and assessing transcatheter closure. J. Neuroimaging 14(4):342–349

    Article  PubMed  Google Scholar 

  30. Topol E. J., Yadav J. S. (2000) Recognition of the importance of embolization in atherosclerotic vascular disease. Circulation 101:570–580

    PubMed  CAS  Google Scholar 

  31. World Medical Association Declaration of Helsinki (2002) Ethical principles for medical research involving human subjects. Nurs. Ethics 9(1):105–109

    Article  Google Scholar 

  32. Zhang Y., Zhang H., Zhang N. (2005) Microembolic signal characterization using adaptive chirplet expansion. IEEE Trans. Ultrason Ferroelectr. Freq. Control. 52(8):1291–1299

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partly supported by a grant from the Thuringian Ministry of Culture TKM (HWP) and the University of Applied Sciences Jena.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Voss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voss, A., Bahrmann, P., Schröder, R. et al. Automatic Detection of Microemboli During Percutaneous Coronary Interventions. Ann Biomed Eng 35, 2087–2094 (2007). https://doi.org/10.1007/s10439-007-9386-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9386-7

Keywords

Navigation