Skip to main content

Advertisement

Log in

Effect of LLLT Ga–Al–As (685 nm) on LPS-induced inflammation of the airway and lung in the rat

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the effect of low level laser therapy (LLLT) on male Wistar rat trachea hyperreactivity (RTHR), bronchoalveolar lavage (BAL) and lung neutrophils influx after Gram-negative bacterial lipopolyssacharide (LPS) intravenous injection. The RTHR, BAL and lung neutrophils influx were measured over different intervals of time (90 min, 6 h, 24 h and 48 h). The energy density (ED) that produced an anti-inflammatory effect was 2.5 J/cm2, reducing the maximal contractile response and the sensibility of trachea rings to methacholine after LPS. The same ED produced an anti-inflammatory effect on BAL and lung neutrophils influx. The Celecoxib COX-2 inhibitor reduced RTHR and the number of cells in BAL and lung neutrophils influx of rats treated with LPS. Celecoxib and LLLT reduced the PGE2 and TXA2 levels in the BAL of LPS-treated rats. Our results demonstrate that LLLT produced anti-inflammatory effects on RTHR, BAL and lung neutrophils influx in association with inhibition of COX-2-derived metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–h
Fig. 2a–d
Fig. 3a–f
Fig. 4a–f
Fig. 5a–f

Similar content being viewed by others

References

  1. Kips JC, Tavernier J, Pauwels RA (1992) Tumor necrosis factor causes bronchial hyperresponsiveness in rats. Am Rev Respir Dis 145(2 Pt 1):332–336

    CAS  PubMed  Google Scholar 

  2. Deleuze V, Lefort J, Bureau MF, Scherman D, Vargaftig BB (2004) LPS-induced bronchial hyperreactivity: interference by mIL-10 differs according to site of delivery. Am J Physiol Lung Cell Mol Physiol 286(1):L98–L105

    Google Scholar 

  3. Miller DL, Welty-Wolf K, Carraway MS, Ezban M, Ghio A, Suliman H, Piantadosi CA (2002) Extrinsic coagulation blockade attenuates lung injury and proinflammatory cytokine release after intratracheal lipopolysaccharide. Am J Respir Cell Mol Biol 26(6):650–658

    CAS  PubMed  Google Scholar 

  4. Jansson AH, Eriksson C, Wang X (2004) Lung inflammatory responses and hyperinflation induced by an intratracheal exposure to lipopolysaccharide in rats. Lung 182(3):163–171

    Article  CAS  PubMed  Google Scholar 

  5. McKay S, Sharma HS (2002) Autocrine regulation of asthmatic airway inflammation: role of airway smooth muscle. Respir Res 3(1):11

    Article  PubMed  Google Scholar 

  6. Barnes JP, Liew YF (1995) Nitric oxide and asthmatic inflammation. Immunol Today 16:128–130

    Article  CAS  PubMed  Google Scholar 

  7. Kharitonov SA, Barnes PJ (1996) Nitric oxide in exhaled air is a new marker of airway inflammation. Monaldi Arch Chest Dis 51(6):533–537

    CAS  PubMed  Google Scholar 

  8. Vignola AM, Chanez P, Bonsignore G, Godard P, Bousquet J (2000) Structural consequences of airway inflammation in asthma. J Allergy Clin Immunol 105(2 Pt 2):S514–S517

    Google Scholar 

  9. Sampson AP (2000) The role of eosinophils and neutrophils in inflammation. Clin Exp Allergy 30(Suppl 1):22–27

    Article  PubMed  Google Scholar 

  10. Appleton I, Tomilinson A, Willought DA (1994) Inducible cyclooxygenase (COX-2): a safer therapeutic target? Br J Rheumatol 33:410–412

    CAS  PubMed  Google Scholar 

  11. Mester E, Mester AF, Mester A (1985) The biomedical effects of laser application. Laser Surg Med 5:31–39

    CAS  Google Scholar 

  12. Baxter GD (1994).Therapeutic lasers: theory and practice. Churchill Livingstone, Edinburgh, UK

    Google Scholar 

  13. Gersh MR (1990) Transcutaneous electrical nerve stimulation for management of pain. In: Gersh MR (ed) Electrotherapy in rehabilitation. FA Davis, Philadelphia, Pennsylvania, pp 149–196

    Google Scholar 

  14. Basford JR (1995) Low intensity laser therapy: still not an established clinical tool. Laser Surg Med 16(4):331–342

    CAS  Google Scholar 

  15. Basford JR (1993) Laser therapy: scientific basis and clinical role. Orthopaedics 16(5):541–547

    CAS  Google Scholar 

  16. Basford JR (1986) Low-energy laser treatment of pain and wounds: hype, hope, or hokum? Proc Mayo Clin 61:671–675

    CAS  PubMed  Google Scholar 

  17. Basford JR (1989) Low-energy laser therapy: controversies and new research findings. Laser Surg Med 9:1–5

    CAS  Google Scholar 

  18. Boulnois JL (1985) Photophysical processes in recent medical laser developments: a review. Laser Surg Med 1:47–66

    Google Scholar 

  19. Honmura A, Akemi I, Masahiro Y, Obata J, Haruki E (1993) Analgesic effect of Ga–Al–As diode laser irradiation on hyperalgesia in carrageenin-induced inflammation. Laser Surg Med 13:463–469

    CAS  Google Scholar 

  20. Honmura A, Yanase M, Obata J, Haruki E (1992) Therapeutic effect of Ga–Al–As diode laser irradiation on experimentally induced inflammation in rats. Laser Surg Med 12:441–449

    CAS  Google Scholar 

  21. King PR (1990) Low-level laser therapy: a review. Physio Theory Pract 6:127–138

    Google Scholar 

  22. Milojevic M, Kuruc V (2003) Laser biostimulation in the treatment of pleurisy. Med Pregl 56(11–12):516–520

    PubMed  Google Scholar 

  23. Albertine R, Aimbire FSC, Correa FI, Ribeiro W, Cogo JC, Antunes E, Teixeira SA, De Nucci G, Castro-Faria-Neto HC, Zangaro RA (2004) Effects of different protocol doses of low power gallium-aluminum-arsenate (Ga–Al–As) laser radiation (650 nm) on carrageenan-induced rat paw oedema. J Photochem Photobiol B 74:101–107

    Article  PubMed  Google Scholar 

  24. de Lima WT, da Silva ZL (1998) Contractile responses of proximal and distal trachea segments isolated from rats subjected to immunological stimulation: role of connective tissue mast cells. Gen Pharmacol 30(5):689–695

    CAS  PubMed  Google Scholar 

  25. Selig W, Tocker J (1992) Effect of interleukin-1 receptor antagonist on antigen-induced pulmonary responses in guinea pigs. Eur J Pharmacol 213(3):331–336

    Article  CAS  PubMed  Google Scholar 

  26. Fitzpatrick TM, Alter I, Corey EJ, Ramwell PW, Rose JC, Kot PA (1978) Antagonism of the pulmonary vasoconstrictor response to prostaglandin F2alpha by N-dimethylamino substitution of prostaglandin F2alpha. J Pharmacol Exp Ther 206(1):139–142

    CAS  PubMed  Google Scholar 

  27. Granstrom M, Eriksson M, Edevag G (1987) A sandwich ELISA for bovine serum in viral vaccines. J Biol Stand 15(3):193–197

    Article  CAS  PubMed  Google Scholar 

  28. Goldblum SE, Wu KM, Jay M (1985) Lung myeloperoxidase as a measure of pulmonary leukostasis in rabbits. J Appl Physiol 59(6):1978–1985

    Google Scholar 

  29. Warren JS, Barton PA, Mandel DM, Matrosic K (1990) Intrapulmonary tumor necrosis factor triggers local platelet-activating factor production in rat immune complex alveolitis. Lab Invest 63(6):746–754

    CAS  PubMed  Google Scholar 

  30. Henson PM, Zanolari B, Schwartzman NA, Hong SR (1978) Intracellular control of human neutrophil secretion. I. C5a-induced stimulus-specific desensitization and the effects of cytochalasin. B J Immunol 121(3):851–855

    CAS  Google Scholar 

  31. Vargaftig BB (1997) Modifications of experimental bronchopulmonary hyperresponsiveness. Am J Respir Crit Care Med 156(4 Pt 2):S97–S102

    CAS  PubMed  Google Scholar 

  32. Herman JH, Khosla RC (1989) Nd:YAG laser modulation of synovial tissue metabolism. Clin Exp Rheumatol 7:505–512

    CAS  PubMed  Google Scholar 

  33. Fretz PB, Zhong L (1992) Low energy laser irradiation treatment for second intention wound healing in horses. Canine Vet J 33:31–35

    Google Scholar 

  34. Miró L, Coupe M, Charras C, Sambon C, Chevalier JM (1984) Estudio capiloroscópico de la acción de un láser de AsGa sobre la microcirculación. Inv Clinica Láser 1(2):9–14

    Google Scholar 

  35. Schindl A, Schindl M, Pernerstorfer-Schön H, Schindl L (2000) Low-intensity laser therapy: a review. J Invest Med 48(5):312–326

    CAS  Google Scholar 

  36. Schaffer M, Bonel H, Sroka R, Achaffer PM, Busch M, Reiser M, Dühmke E (2000) Effects of 780 nm diode laser irradiation on blood microcirculation preliminary findings on time-dependent T1-weighted contrast-enhanced magnetic resonance imaging (MRI). J Photochem Photobiol B 54:55–60

    Article  CAS  PubMed  Google Scholar 

  37. Campana V, Moya M, Gavotto A, Juri H, Palma JA (1998) Effects of diclofenac sodium and HeNe laser irradiation on plasmatic fibrinogen levels in inflammatory processes. J Clin Laser Med Surg 16(6):317–320

    CAS  PubMed  Google Scholar 

  38. Hang HH, Queshi AA, Biundo Jr JJ (2000) Sports and other soft tissue injuries, tendinitis, bursitis, and occupation-related syndromes. Curr Opin Rheumatol 12:150–154

    Article  PubMed  Google Scholar 

  39. Misuoka H, Sakurai T, Unno N, Kaneko Suzuki S, Nakamura S, Terakawa S (1999) Intravital laser confocal microscopy of pulmonary edema resulting from intestinal ischemia-reperfusion injury in the rat. Crit Care Méd 27(9):1862–1868

    Google Scholar 

  40. Sato J, Chida K, Suda T, Sato A, Nakamura H (2000) Migratory patterns of thoracic duct lymphocytes into bronchus-associated lymphoid tissue of immunized rats. Lung 178(5):295–308

    Article  CAS  PubMed  Google Scholar 

  41. Karu TI, (2000) Mechanisms of low-power laser light action on cellular level. In: Simunovic Z (ed) Laser in medicine and dentistry. Vigraf, Rijeka, Croatia, pp 97–125

    Google Scholar 

  42. Karu TI (1987) Photobiological fundamentals of low power laser therapy. IEEE J Quant Electron 23:1703–1717

    Article  Google Scholar 

  43. Landyshev IS, Avdeeva NV, Goborov ND, Krasavina NP, Tikhonova GA, Tkacheva SI (2002) Efficacy of low intensity laser irradiation and sodium nedocromil in the complex treatment of patients with bronchial asthma. Ter Arkh 74(3):25–28

    Google Scholar 

  44. Wilden L, Karthein R (1998) Import of radiation phenomena of electrons and therapeutic low-level laser in regard to the mitochondrial energy transfer. J Clin Laser Med Surg 16(3):159–165

    CAS  PubMed  Google Scholar 

  45. Villarroya-Aparicio A (1994) El laser y el dolor. Rehabilitación 28(5):346–353

    Google Scholar 

  46. Nishida J, Satoh T, Satodate R, Abe M, Oyamada Y (1990) Histological evaluation of the effect of He–Ne laser irradiation on the synovial membrane in rheumatoid arthritis. Jpn J Rheumatol 2:251–260

    Google Scholar 

  47. Bradding P, Redington AE, Holgate ST (1997) Airway wall remodelling in the pathogenesis of asthma: cytokine expression in the airway. In: Stewart AG (ed) Airway wall remodelling in asthma. CRC Press, Boca Raton, Florida, pp 29–63

    Google Scholar 

  48. Johnson PR, Armour CL, Carey D, Black JL (1995) Heparin and PGE2 inhibit DNA synthesis in human airway smooth muscle cells in culture. Am J Physiol 269(4 Pt 1):L514–L519

    Google Scholar 

  49. Pang L, Knox AJ (1997) Effect of interleukin-1 beta, tumour necrosis factor-alpha and inferno-gamma on the induction of cyclo-oxygenase-2 in cultured human airway smooth muscle cells. Br J Pharmacol 121:579–587

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Aimbire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aimbire, F., Albertine, R., Magalhães, R.G.d. et al. Effect of LLLT Ga–Al–As (685 nm) on LPS-induced inflammation of the airway and lung in the rat. Lasers Med Sci 20, 11–20 (2005). https://doi.org/10.1007/s10103-005-0339-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-005-0339-9

Keywords

Navigation