Skip to main content
Log in

Fetal programming of renal function

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Results from large epidemiological studies suggest a clear relation between low birth weight and adverse renal outcome evident as early as during childhood. Such adverse outcomes may include glomerular disease, hypertension, and renal failure and contribute to a phenomenon called fetal programming. Other factors potentially leading to an adverse renal outcome following fetal programming are maternal diabetes mellitus, smoking, salt overload, and use of glucocorticoids during pregnancy. However, clinical data on the latter are scarce. Here, we discuss potential underlying mechanisms of fetal programming, including reduced nephron number via diminished nephrogenesis and other renal (e.g., via the intrarenal renin–angiotensin–aldosterone system) and non-renal (e.g., changes in endothelial function) alterations. It appears likely that the outcomes of fetal programming may be influenced or modified postnatally, for example, by the amount of nutrients given at critical times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ (1989) Weight in infancy and death from ischaemic heart disease. Lancet 2:577–580

    Article  PubMed  CAS  Google Scholar 

  2. Dötsch J, Plank C, Amann K, Ingelfinger J (2009) The implications of fetal programming of glomerular number and renal function. J Mol Med 87:841–848

    Article  PubMed  Google Scholar 

  3. Lackland DT, Bendall HE, Osmond C, Egan BM, Barker DJ (2000) Low birth weights contribute to high rates of early-onset chronic renal failure in the Southeastern United States. Arch Intern Med 160:1472–1476

    Article  PubMed  CAS  Google Scholar 

  4. Vikse BE, Irgens LM, Leivestad T, Hallan S, Iversen BM (2008) Low birth weight increases risk for end-stage renal disease. J Am Soc Nephrol 19:151–157

    Article  PubMed  Google Scholar 

  5. Khalil CA, Travert F, Fetita S, Rouzet F, Porcher R, Riveline JP, Hadjadj S, Larger E, Roussel R, Vexiau P, Le Guludec D, Gautier JF, Marre M (2010) Fetal exposure to maternal type 1 diabetes is associated with renal dysfunction at adult age. Diabetes 59:2631–2636

    Article  Google Scholar 

  6. Lackland DT, Egan BM, Fan ZJ, Syddall HE (2001) Low birth weight contributes to the excess prevalence of end-stage renal disease in African Americans. J Clin Hypertens (Greenwich) 3:29–31

    Article  CAS  Google Scholar 

  7. Li S, Chen SC, Shlipak M, Bakris G, McCullough PA, Sowers J, Stevens L, Jurkovitz C, McFarlane S, Norris K, Vassalotti J, Klag MJ, Brown WW, Narva A, Calhoun D, Johnson B, Obialo C, Whaley-Connell A, Becker B, Collins AJ (2008) Kidney early evaluation program investigators. Low birth weight is associated with chronic kidney disease only in men. Kidney Int 73:637–642

    Article  PubMed  CAS  Google Scholar 

  8. Hallan S, Euser AM, Irgens LM, Finken MJ, Holmen J, Dekker FW (2008) Effect of intrauterine growth restriction on kidney function at young adult age: the Nord Trøndelag Health [HUNT 2] Study. Am J Kidney Dis 51:10–20

    Article  PubMed  Google Scholar 

  9. López-Bermejo A, Sitjar C, Cabacas A, Vázquez-Ruíz M, García-González MM, Mora C, Soriano P, Calvo M, Ibáñez L (2008) Prenatal programming of renal function: the estimated glomerular filtration rate is influenced by size at birth in apparently healthy children. Pediatr Res 64:97–99

    Article  PubMed  Google Scholar 

  10. Franco MC, Nishida SK, Sesso R (2008) GFR estimated from cystatin C versus creatinine in children born small for gestational age. Am J Kidney Dis 51:925–932

    Article  PubMed  CAS  Google Scholar 

  11. White SL, Perkovic V, Cass A, Chang CL, Poulter NR, Spector T, Haysom L, Craig JC, Salmi IA, Chadban SJ, Huxley RR (2009) Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. Am J Kidney Dis 54:248–261

    Article  PubMed  Google Scholar 

  12. Dötsch J, Dittrich K, Plank C, Rascher W (2006) Is tacrolimus for childhood steroid-dependent nephrotic syndrome better than ciclosporin A? Nephrol Dial Transplant 21:1761–1763

    Article  PubMed  Google Scholar 

  13. Sheu JN, Chen JH (2001) Minimal change nephrotic syndrome in children with intrauterine growth retardation. Am J Kidney Dis 37:909–914

    Article  PubMed  CAS  Google Scholar 

  14. Zidar N, Avgustin Cavic M, Kenda RB, Ferluga D (1998) Unfavorable course of minimal change nephrotic syndrome in children with intrauterine growth retardation. Kidney Int 54:1320–1323

    Article  PubMed  CAS  Google Scholar 

  15. Plank C, Östreicher I, Rascher W, Dötsch J (2007) Born SGA, but not postnatal weight gain aggravates the course of nephrotic syndrome in children. Pediatr Nephrol 22:1881–1889

    Article  PubMed  Google Scholar 

  16. Teeninga N, Schreuder MF, Bökenkamp A, Delemarre-van de Waal HA, van Wijk JA (2008) Influence of low birth weight on minimal change nephrotic syndrome in children, including a meta-analysis. Nephrol Dial Transplant 23:1615–1620

    Article  PubMed  Google Scholar 

  17. Goldstein AR, White RH, Akuse R, Chantler C (1992) Long-term follow-up of childhood Henoch–Schönlein nephritis. Lancet 339:280–282

    Article  PubMed  CAS  Google Scholar 

  18. Zidar N, Cavic MA, Kenda RB, Koselj M, Ferluga D (1998) Effect of intrauterine growth retardation on the clinical course and prognosis of IgA glomerulonephritis in children. Nephron 79:28–32

    Article  PubMed  CAS  Google Scholar 

  19. Plank C, Vasilache I, Dittrich K, Dötsch J (2010) Early weight gain and outcome in Henoch-Schönlein nephritis. Klin Pädiatr 222:455–459

    Article  PubMed  CAS  Google Scholar 

  20. Stoffers DA, Desai BM, DeLeon DD, Simmons RA (2003) Neonatal exendin-4 prevents the development of diabetes in the intrauterine growth retarded rat. Diabetes 52:734–740

    Article  PubMed  CAS  Google Scholar 

  21. Nüsken KD, Dötsch J, Rauh M, Rascher W, Schneider H (2008) Uteroplacental insufficiency after bilateral uterine artery ligation in the rat: impact on postnatal glucose and lipid metabolism and evidence for metabolic programming of the offspring by sham operation. Endocrinology 149:1056–1063

    Article  PubMed  Google Scholar 

  22. Wlodek ME, Westcott K, Siebel AL, Owens JA, Moritz KM (2008) Growth restriction before or after birth reduces nephron number and increases blood pressure in male rats. Kidney Int 74:187–195

    Article  PubMed  Google Scholar 

  23. Plank C, Nüsken KD, Menendez-Castro C, Hartner A, Ostreicher I, Amann K, Baumann P, Peters H, Rascher W, Dötsch J (2010) Intrauterine growth restriction following ligation of the uterine arteries leads to more severe glomerulosclerosis after mesangioproliferative glomerulonephritis in the offspring. Am J Nephrol 32:287–295

    Article  PubMed  CAS  Google Scholar 

  24. Woods LL, Ingelfinger JR, Nyengaard JR, Rasch R (2001) Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats. Pediatr Res 49:460–467

    Article  PubMed  CAS  Google Scholar 

  25. Elmes MJ, Gardner DS, Langley-Evans SC (2007) Fetal exposure to a maternal low-protein diet is associated with altered left ventricular pressure response to ischemia-reperfusion injury. Br J Nutr 98:93–100

    Article  PubMed  CAS  Google Scholar 

  26. Plank C, Östreicher I, Hartner A, Marek I, Struwe FG, Amann K, Hilgers KF, Rascher W, Dötsch J (2006) Intrauterine growth retardation aggravates the course of acute mesangioproliferative glomerulonephritis in the rat. Kidney Int 70:1974–1982

    PubMed  CAS  Google Scholar 

  27. Harrison M, Langley-Evans SC (2009) Intergenerational programming of impaired nephrogenesis and hypertension in rats following maternal protein restriction during pregnancy. Br J Nutr 101:1020–1030

    Article  PubMed  CAS  Google Scholar 

  28. Langley-Evans SC (2009) Nutritional programming of disease: unravelling the mechanism. J Anat 215:36–51

    Article  PubMed  Google Scholar 

  29. Nuyt AM (2008) Mechanisms underlying developmental programming of elevated blood pressure and vascular dysfunction: evidence from human studies and experimental animal models. Clin Sci 114:1–17

    Article  PubMed  CAS  Google Scholar 

  30. Brenner BM, Mackenzie HS (1997) Nephron mass as a risk factor for progression of renal disease. Kidney Int Suppl 63:S124–S127

    PubMed  CAS  Google Scholar 

  31. Hoy WE, Bertram JF, Denton RD, Zimanyi M, Samuel T, Hughson MD (2008) Nephron number, glomerular volume, renal disease and hypertension. Curr Opin Nephrol Hypertens 17:258–265

    Article  PubMed  Google Scholar 

  32. Woods LL, Weeks DA, Rasch R (2004) Programming of adult blood pressure by maternal protein restriction: role of nephrogenesis. Kidney Int 65:1339–1348

    Article  PubMed  Google Scholar 

  33. Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure: Less of one, more of the other ? Am J Hypertens 1:335–347

    PubMed  CAS  Google Scholar 

  34. Keller G, Zimmer G, Mall G, Ritz E, Amann K (2003) Nephron number in patients with primary hypertension. N Engl J Med 348:101–108

    Article  PubMed  Google Scholar 

  35. Hughson MD, Douglas-Denton R, Bertram JF, Hoy WE (2006) Hypertension, glomerular number, and birth weight in African Americans and white subjects in the southeastern United States. Kidney Int 69:671–678

    Article  PubMed  CAS  Google Scholar 

  36. Kuure S, Vuolteenaho R, Vainio S (2000) Kidney morphogenesis: cellular and molecular regulation. Mech Dev 92:31–45

    Article  PubMed  CAS  Google Scholar 

  37. Langley-Evans SC, Sherman RC, Welham SJ, Nwagwu MO, Gardner DS, Jackson AA (1999) Intrauterine programming of hypertension: the role of the renin-angiotensin system. Biochem Soc Trans 27:88–93

    PubMed  CAS  Google Scholar 

  38. Sahajpal V, Ashton N (2003) Renal function and angiotensin AT1 receptor expression in young rats following intrauterine exposure to a maternal low-protein diet. Clin Sci (Lond) 104:607–614

    Article  CAS  Google Scholar 

  39. Bogdarina I, Welham S, King PJ, Burns SP, Clark AJ (2007) Epigenetic modification of the renin–angiotensin system in the fetal programming of hypertension. Circ Res 100:520–526

    Article  PubMed  CAS  Google Scholar 

  40. Simonetti GD, Raio L, Surbek D, Nelle M, Frey FJ, Mohaupt MG (2008) Salt sensitivity of children with low birth weight. Hypertension 52:625–630

    Article  PubMed  CAS  Google Scholar 

  41. Seckl JR, Meaney MJ (2004) Glucocorticoid programming. Ann NY Acad Sci 1032:63–1084

    Article  PubMed  CAS  Google Scholar 

  42. Bertram C, Trowern AR, Copin N, Jackson AA, Whorwood CB (2001) The maternal diet during pregnancy programs altered expression of the glucocorticoid receptor and type 2 11beta-hydroxysteroid dehydrogenase: potential molecular mechanisms underlying the programming of hypertension in utero. Endocrinology 142:2841–2853

    Article  PubMed  CAS  Google Scholar 

  43. Schoof E, Girstl M, Frobenius W, Kirschbaum M, Dörr HG, Rascher W, Dötsch J (2001) Reduced placental gene expression of 11ß hydroxysteroid dehydogenase type 2 and 15-hydrodroxy prostaglandin dehydrogenase in patients with preeclampsia. J Clin Endocrinol Metab 86:1313–1317

    Article  PubMed  CAS  Google Scholar 

  44. Struwe E, Berzl D, Schild RL, Beckmann MW, Dörr HG, Rascher W, Dötsch J (2007) Simultaneously reduced gene expression of cortisol-activating and cortisol-inactivating enzymes in placentas of small-for-gestational-age neonates. Am J Obstet Gynecol 197(43):e1–e6

    PubMed  Google Scholar 

  45. Ostreicher I, Almeida JR, Campean V, Rauh M, Plank C, Amann K, Dötsch J (2010) Changes in 11beta-hydroxysteroid dehydrogenase type 2 expression in a low-protein rat model of intrauterine growth restriction. Nephrol Dial Transplant 25:3195–3203

    Article  PubMed  Google Scholar 

  46. Martin H, Gazelius B, Norman M (2000) Impaired acetylcholine-induced vascular relaxation in low birth weight infants: implications for adult hypertension? Pediatr Res 47:457–462

    Article  PubMed  CAS  Google Scholar 

  47. Franco MC, Christofalo DM, Sawaya AL, Ajzen SA, Sesso R (2006) Effects of low birth weight in 8- to 13-year-old children: implications in endothelial function and uric acid levels. Hypertension 48:45–50

    Article  PubMed  CAS  Google Scholar 

  48. Martin H, Hu J, Gennser G, Norman M (2000) Impaired endothelial function and increased carotid stiffness in 9-year-old children with low birth weight. Circulation 28(102):2739–2744

    Google Scholar 

  49. Nuyt AM (2008) Mechanisms underlying developmental programming of elevated blood pressure and vascular dysfunction: evidence from human studies and experimental animal models. Clin Sci 114:1–17

    Article  PubMed  CAS  Google Scholar 

  50. Phillips DI, Barker DJ (1997) Association between low birth weight and high resting pulse in adult life: is the sympathetic nervous system involved in programming the insulin resistance syndrome? Diabet Med 14:673–677

    Article  PubMed  CAS  Google Scholar 

  51. Alexander BT, Hendon AE, Ferril G, Dwyer TM (2005) Renal denervation abolishes hypertension in low-birth-weight offspring from pregnant rats with reduced uterine perfusion. Hypertension 45:754–758

    Article  PubMed  CAS  Google Scholar 

  52. Ravelli AC, van der Meulen JH, Michels RP, Osmond C, Barker DJ, Hales CN, Bleker OP (1998) Glucose tolerance in adults after prenatal exposure to famine. Lancet 351:173–177

    Article  PubMed  CAS  Google Scholar 

  53. Stanner SA, Yudkin JS (2001) Fetal programming and the Leningrad Siege study. Twin Res 4:287–292

    Article  PubMed  CAS  Google Scholar 

  54. Gluckman PD, Hanson MA, Cooper C, Thornburg KL (2008) Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 359:61–373

    Article  PubMed  CAS  Google Scholar 

  55. Clayton PE, Cianfarani S, Czernichow P, Johannsson G, Rapaport R, Rogol A (2007) Management of the child born small for gestational age through to adulthood: a consensus statement of the International Societies of Pediatric Endocrinology and the Growth Hormone Research Society. J Clin Endocrinol Metab 92:804–810

    Article  PubMed  CAS  Google Scholar 

  56. Singhal A, Cole TJ, Fewtrell M, Kennedy K, Stephenson T, Elias-Jones A, Lucas A (2007) Promotion of faster weight gain in infants born small for gestational age: is there an adverse effect on later blood pressure? Circulation 115:213–220

    Article  PubMed  Google Scholar 

  57. Ben-Shlomo Y, McCarthy A, Hughes R, Tilling K, Davies D, Davey Smith G (2008) Immediate postnatal growth is associated with blood pressure in young adulthood: the Barry Caerphilly growth study. Hypertension 52:638–644

    Article  PubMed  CAS  Google Scholar 

  58. Rocha SO, Gomes GN, Forti AL, do Carmo Pinho Franco M, Fortes ZB, de Fátima Cavanal M, Gil FZ (2005) Long-term effects of maternal diabetes on vascular reactivity and renal function in rat male offspring. Pediatr Res 58:1274–1279

    Article  PubMed  Google Scholar 

  59. Nehiri T, Duong Van Huyen JP, Viltard M, Fassot C, Heudes D, Freund N, Deschênes G, Houillier P, Bruneval P, Lelièvre-Pégorier M (2008) Exposure to maternal diabetes induces salt-sensitive hypertension and impairs renal function in adult rat offspring. Diabetes 57:2167–21275

    Article  PubMed  CAS  Google Scholar 

  60. Chen YW, Chenier I, Tran S, Scotcher M, Chang SY, Zhang SL (2010) Maternal diabetes programs hypertension and kidney injury in offspring. Pediatr Nephrol 25:1319–1329

    Article  PubMed  Google Scholar 

  61. Tran S, Chen YW, Chenier I, Chan JS, Quaggin S, Hébert MJ, Ingelfinger JR, Zhang SL (2008) Maternal diabetes modulates renal morphogenesis in offspring. J Am Soc Nephrol 19:943–952

    Article  PubMed  CAS  Google Scholar 

  62. Rocco L, Gil FZ, da Fonseca Pletiskaitz TM, de Fátima CM, Gomes GN (2008) Effect of sodium overload on renal function of offspring from diabetic mothers. Pediatr Nephrol 23:2053–2060

    Article  PubMed  Google Scholar 

  63. Boubred F, Buffat C, Feuerstein JM, Daniel L, Tsimaratos M, Oliver C, Lelièvre-Pégorier M, Simeoni U (2007) Effects of early postnatal hypernutrition on nephron number and long-term renal function and structure in rats. Am J Physiol Renal Physiol 293:F1944–F1949

    Article  PubMed  CAS  Google Scholar 

  64. Cardoso HD, Cabral EV, Vieira-Filho LD, Vieyra A, Paixão AD (2009) Fetal development and renal function in adult rats prenatally subjected to sodium overload. Pediatr Nephrol 24:1959–1965

    Article  PubMed  Google Scholar 

  65. Chadwick MA, Vercoe PE, Williams IH, Revell DK (2009) Dietary exposure of pregnant ewes to salt dictates how their offspring respond to salt. Physiol Behav 22(97):437–445

    Article  Google Scholar 

  66. Dickinson H, Walker DW, Wintour EM, Moritz K (2007) Maternal dexamethasone treatment at midgestation reduces nephron number and alters renal gene expression in the fetal spiny mouse. Am J Physiol Regul Integr Comp Physiol 292:R453–R461

    Article  PubMed  CAS  Google Scholar 

  67. Woods LL, Weeks DA (2005) Prenatal programming of adult blood pressure: role of maternal corticosteroids. Am J Physiol Regul Integr Comp Physiol 289:R955–R962

    Article  PubMed  CAS  Google Scholar 

  68. Fetita LS, Sobngwi E, Serradas P, Calvo F, Gautier JF (2006) Consequences of fetal exposure to maternal diabetes in offspring. J Clin Endocrinol Metab 91:3718–3724

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Deutsche Forschungsgemeinschaft, Bonn, Germany; Sonderforschungsbereich 423, TP B13 to Christian Plank and Jörg Dötsch, and TP Z2 to Kerstin Amann.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Dötsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dötsch, J., Plank, C. & Amann, K. Fetal programming of renal function. Pediatr Nephrol 27, 513–520 (2012). https://doi.org/10.1007/s00467-011-1781-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-011-1781-5

Keywords

Navigation