Skip to main content
Log in

Selective contribution of each hamstring muscle to anterior cruciate ligament protection and tibiofemoral joint stability in leg-extension exercise: a simulation study

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

A biomechanical model was developed to simulate the selective effect of the co-contraction force provided by each hamstring muscle on the shear and compressive tibiofemoral joint reaction forces, during open kinetic-chain knee-extension exercises. This model accounts for instantaneous values of knee flexion angle \((\theta_{\text{flex}} )\), angular velocity and acceleration, and for changes in magnitude, orientation, and application point of external resistance. The tibiofemoral shear force (TFSF) largely determines the tensile force on anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL). Biceps femoris is the most effective hamstring muscle in decreasing the ACL-loading TFSF developed by quadriceps contractions for \(\theta_{\text{flex}} < 40^\circ\). In this range, the semimembranosus generates the dominant tibiofemoral compressive force, which enhances joint stability, opposes anterior/posterior tibial translations, and protects cruciate ligaments. The semitendinosus force provides the greatest decreasing gradient of ACL-loading TFSF for \(\theta_{\text{flex}} \le 20^\circ\), and the greatest increasing gradient of tibiofemoral compressive force for \(\theta_{\text{flex}} \ge 50^\circ\). However, semitendinosus efficacy is strongly limited by its small physiological section. Hamstring muscles behave as a unique muscle in enhancing the PCL-loading TFSF produced by quadriceps contractions for \(\theta_{\text{flex}} \ge 40^\circ\). The levels of hamstrings co-activation that suppress the ACL-loading TFSF considerably shift when the knee angular acceleration is changed while maintaining the same level of knee extensor torque by a concurrent adjustment in the magnitude of external resistance. The knowledge of the specific role and the optimal activation level of each hamstring muscle in ACL protection and tibiofemoral stability are fundamental for planning safe and effective rehabilitative knee-extension exercises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aagaard P, Simonsen EB, Anderson JL, Magnusson SP, Bojsen-Moller F, Dyhre-Poulsen P (2000) Antagonist muscle coactivation during isokinetic knee extension. Scand J Med Sci Sports 10:58–67

    Article  PubMed  CAS  Google Scholar 

  • Alkjær T, Simonsen EB, Magnusson SP, Dyhre-Poulsen P, Aagaard P (2012) Antagonist muscle moment is increased in ACL deficient subjects during maximal dynamic knee extension. Knee (in press)

  • Amiridis IG, Martin A, Morlon B, Martin L, Cometti G, Pousson M, van Hoecke J (1996) Co-activation and tension-regulating phenomena during isokinetic knee extension in sedentary and highly skilled humans. Eur J Appl Physiol 73:149–156

    Article  CAS  Google Scholar 

  • Arnold EM, Delp SL (2011) Fibre operating lengths of human lower limb muscles during walking. Philos Trans Royal Soc B 366:1530–1539

    Article  Google Scholar 

  • Arnold EM, Ward SR, Lieber RL, Delp SL (2010) A model of the lower limb for analysis of human movement. Ann Biomed Eng 38:269–279

    Article  PubMed  Google Scholar 

  • Baratta R, Solomonow M, Zhou BH, Letson D, Chuinard R, DAmbrosia R (1988) Muscular coactivation. The role of the antagonist musculature in maintaining knee stability. Am J Sports Med 16:113–122

    Article  PubMed  CAS  Google Scholar 

  • Beynnon BD, Fleming BC (1998) Anterior cruciate ligament strain in vivo: a review of previous work. J Biomech 31:519–525

    Article  PubMed  CAS  Google Scholar 

  • Beynnon BD, Fleming BC, Johnson RJ, Nichols CE (1995) Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. Am J Sports Med 23:24–34

    Article  PubMed  CAS  Google Scholar 

  • Biscarini A (2008) Minimization of the knee shear joint load in leg-extension equipment. Med Eng Phys 30:1032–1041

    Article  PubMed  CAS  Google Scholar 

  • Biscarini A (2010) Biomechanics of off-center monoarticular exercises with lever selectorized equipment. J Appl Biomech 26:73–86

    PubMed  Google Scholar 

  • Biscarini A (2012) Determination and optimization of joint torques and joint reaction forces in therapeutic exercises with elastic resistance. Med Eng Phys 34:9–16

    Article  PubMed  Google Scholar 

  • Biscarini A, Cerulli G (2007) Modeling of the knee joint load in rehabilitative knee extension exercises under water. J Biomech 40:345–355

    Article  PubMed  CAS  Google Scholar 

  • Butler DL, Noyes FR, Grood ES (1980) Ligamentous restraints to anterior–posterior drawer in the human knee: a biomechanical study. J Bone Jt Surg (Am Vol) 62:259–270

    CAS  Google Scholar 

  • de Leva P (1996) Adjustments to Zatsiorsky–Seluyanov’s segment inertia parameters. J Biomech 29:1223–1230

    Article  PubMed  Google Scholar 

  • Draganich LF, Vahey JW (1990) An in vitro study of anterior cruciate ligament strain induced by quadriceps and hamstrings forces. J Orthop Res 8:57–63

    Article  PubMed  CAS  Google Scholar 

  • Draganich LF, Jaeger RJ, Kralj AR (1989) Coactivation of the hamstrings and quadriceps during extension of the knee. J Bone Jt Surg 71:1075–1081

    CAS  Google Scholar 

  • Enoka R (2002) Neuromechanics of human movement (third edition). Human Kinetics, Champaign

    Google Scholar 

  • Grabiner MD, Campbell KR, Hawthorne DL, Hawkins DA (1989) Electromyographic study of the anterior cruciate ligament-hamstrings synergy during isometric knee extension. J Orthop Res 7:152–155

    Article  PubMed  CAS  Google Scholar 

  • Gryzlo SM, Patek RM, Pink M, Perry J (1994) Elecrtomyographic analysis of knee rehabilitation exercises. J Orthop Sport Phys Ther 20:36–43

    CAS  Google Scholar 

  • Herzog W, Read LJ (1993) Lines of action and moment arms of the major force-carrying structures crossing the human knee joint. J Anat 182:213–230

    PubMed  Google Scholar 

  • Imran A, O’Connor JJ (1998) Control of knee stability after ACL injury or repair: interaction between hamstrings contraction and tibial translation. Clin Biomech 13:153–162

    Article  Google Scholar 

  • Johansson H, Sjolander P, Sojka P (1991) A sensory role for the cruciate ligaments. Clin Orthop Relat Res 268:161–178

    PubMed  Google Scholar 

  • Kaufman KR, An KN, Chao EYS (1995) A comparison of intersegmental joint dynamics to isokinetic dynamometer measurements. J Biomech 28:1243–1256

    Article  PubMed  CAS  Google Scholar 

  • Kingma I, Aalbersberg S, van Dieën JH (2004) Are hamstrings activated to counteract shear forces during isometric knee extension efforts in healthy subjects? J Electromyogr Kinesiol 14:307–315

    Article  PubMed  Google Scholar 

  • Knapik JJ, Wright JE, Mawdsley RH, Braun J (1983) Isometric, isotonic, and isokinetic torque variations in four muscle groups through a range of joint motion. Phys Ther 63:938–947

    PubMed  CAS  Google Scholar 

  • Li G, Rudy TW, Sakane M, Kanamori A, Ma CB, Woo SL-Y (1999) The importance of quadriceps and hamstring muscle loading on knee kinematics and in situ forces in the ACL. J Biomech 32:395–400

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Maitland ME (2000) The effect of hamstring muscle compensation for anterior laxity in the ACL-deficient knee during gait. J Biomech 33:871–879

    Article  PubMed  CAS  Google Scholar 

  • More RC, Karras BT, Neiman R, Fritschy D (1993) Hamstrings—an anterior cruciate ligament protagonist: an in vitro study. Am J Sports Med 21:231–237

    Article  PubMed  CAS  Google Scholar 

  • Onishi H, Yagi R, Oyama M, Akasaka K, Ihashi K, Handa Y (2002) EMG-angle relationship of the hamstring muscles during maximum knee flexion. J Electromyogr Kinesiol 12:399–406

    Article  PubMed  Google Scholar 

  • Ono T, Okuwaki T, Fukubayashi T (2010) Differences in activation patterns of knee flexor muscles during concentric and eccentric exercises. Res Sports Med 18:188–198

    Article  PubMed  Google Scholar 

  • Ono T, Higashihara A, Fukubayashi T (2011) Hamstring functions during hip-extension exercise assessed with electromyography and magnetic resonance imaging. Res Sports Med 19:42–52

    Google Scholar 

  • Pandy MG, Shelburne KB (1997) Dependence of cruciate-ligament loading on muscle forces and external load. J Biomech 30:1015–1024

    Article  PubMed  CAS  Google Scholar 

  • Renström P, Arms SW, Stanwyck TS, Johnson RJ (1986) Strain within the anterior cruciate ligament during hamstring and quadriceps activity. Am J Sports Med 14:83–87

    Article  PubMed  Google Scholar 

  • Solomonow M, Baratta R, Zhou BH, Shoji H, Bose W, Beck C, D’Ambrosia R (1987) The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am J Sports Med 15:207–213

    Article  PubMed  CAS  Google Scholar 

  • Ward SR, Eng CM, Smallwood LH, Lieber RL (2009) Are current measurements of lower extremity muscle architecture accurate? Clin Orthop Relat Res 467:1074–1082

    Article  PubMed  Google Scholar 

  • Wilk KE, Escamilla RF, Fleisig GS, Barrentine SW, Andrews JR, Boyd ML (1996) A comparison of tibiofemoral joint forces and electromyographic activity during open and closed kinetic chain exercises. Am J Sports Med 24:518–527

    Article  PubMed  CAS  Google Scholar 

  • Yanagawa T, Shelburne KB, Serpas F, Pandy MG (2002) Effect of hamstrings muscle action on stability of the ACL-deficient knee in isokinetic extension exercise. Clin Biomech 17:705–712

    Article  Google Scholar 

  • Zatsiorsky V, Seluyanov V (1983) The mass and inertia characteristics of the main segments of the human body. In: Matsui H, Kobayashi K (eds) Biomechanics VIII-B. Human Kinetics, Champaign, pp 1152–1159

    Google Scholar 

  • Zatsiorsky V, Seluyanov V, Chugunova L (1990) In vivo body segment inertial parameters determination using a gamma-scanner method. In: Berme N, Cappozzo A (eds) Biomechanics of human movement: applications in rehabilitation, sports and ergonomics. Bertec Corp, Worthington, pp 186–202

    Google Scholar 

  • Zatsiorsky V, Seluyanov V, Chugunova L (1991) Methods of determining mass-inertial characteristics of human body segments. In: Chernyi GG, Regirer SA (eds) Contemporary problems of biomechanics. CRC Press, Massachusetts, pp 272–291

    Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Biscarini.

Additional information

Communicated by Fausto Baldissera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biscarini, A., Botti, F.M. & Pettorossi, V.E. Selective contribution of each hamstring muscle to anterior cruciate ligament protection and tibiofemoral joint stability in leg-extension exercise: a simulation study. Eur J Appl Physiol 113, 2263–2273 (2013). https://doi.org/10.1007/s00421-013-2656-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-013-2656-1

Keywords

Navigation