Skip to main content
Log in

Voluntary activation during maximal contraction with advancing age: a brief review

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

It is well established that the loss of muscle mass (i.e. sarcopenia) is the primary factor contributing to the reduction in muscle force with ageing. Based on the observation that force declines at a faster rate than muscle mass, neural alterations are also thought to contribute to muscle weakness by reducing central drive to the agonist muscles and by increasing coactivation of the antagonist muscles. Researchers have attempted to quantify the contribution of impaired voluntary drive to the decline in muscle force using superimposed electrical stimulation during maximal voluntary contractions (MVCs) and by recording surface electromyographic (EMG) activity. Although reduced voluntary activation of agonist muscles and increased coactivation of antagonist muscles during a MVC have been reported with advancing age, such changes are not supported by all studies. These discrepancies may be explained by differences in sensitivity between the methods used to assess voluntary activation, as well as differences between the characteristics of the study population, the muscle group that is tested, and the type of contraction that is performed. The objective of this review is to summarize current knowledge regarding the activation of agonist and antagonist muscles during MVC in elderly and to try to clarify the disparities in literature concerning the influence of a possible deficit in voluntary activation on the maximal force capacity of muscles in elderly adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002) Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol 93:1318–1326

    PubMed  Google Scholar 

  • Allen GM, McKenzie DK, Gandevia SC (1998) Twitch interpolation of the elbow flexor muscles at high forces. Muscle Nerve 21:318–328

    Article  PubMed  CAS  Google Scholar 

  • Baratta R, Solomonow M, Zhou M, Letson D, D’Ambrosia R (1988) Muscular coactivation. The role of antagonist musculature in maintaining knee joint stability. Am J Sports Med 16:113–122

    Article  PubMed  CAS  Google Scholar 

  • Baudry S, Klass M, Duchateau J (2005) Post-activation potentiation influences differently the nonlinear summation of contractions in young and elderly adults. J Appl Physiol 98:1243–1250

    Article  PubMed  Google Scholar 

  • Behm DG, St-Pierre DMM, Perez D (1996) Muscle inactivation: assessment of interpolated twitch technique. J Appl Physiol 81:2267–2273

    PubMed  CAS  Google Scholar 

  • Behm D, Power K, Drinkwater E (2001) Comparison of interpolation and central activation ratios as measures of muscle inactivation. Muscle Nerve 24:925–934

    Article  PubMed  CAS  Google Scholar 

  • Belanger AY, McComas AJ (1981) Extent of motor unit activation during effort. J Appl Physiol 51:1131–1135

    PubMed  CAS  Google Scholar 

  • Bigland-Ritchie B, Johansson R, Lippold OC, Woods JJ (1983) Contractile speed and EMG changes during fatigue of sustained maximal voluntary contractions. J Neurophysiol 50:313–324

    PubMed  CAS  Google Scholar 

  • Bilodeau M, Erb MD, Nichols JM, Joiner KL, Weeks J (2001) Fatigue of elbow flexor muscles in younger and older adults. Muscle Nerve 24:98–106

    Article  PubMed  CAS  Google Scholar 

  • Burnett RA, Laidlaw DH, Enoka RM (2000) Coactivation of the antagonist muscle does not covary with steadiness in old adults. J Appl Physiol 89:61–71

    PubMed  CAS  Google Scholar 

  • Campbell MJ, McComas AJ, Petito F (1973) Physiological changes in ageing muscles. J Neurol Neurosurg Psychiatry 36:174–182

    Article  PubMed  CAS  Google Scholar 

  • Carolan B, Cafarelli E (1992) Adaptations in coactivation after isometric resistance training. J Appl Physiol 73:911–917

    PubMed  CAS  Google Scholar 

  • Chan KM, Doherty TJ, Brown WF (2001) Contractile properties of human motor units in health, aging, and disease. Muscle Nerve 24:1113–1133

    Article  PubMed  CAS  Google Scholar 

  • Connelly DM, Rice CL, Roos MR, Vandervoort AA (1999) Motor unit firing rate and contractile properties in tibialis anterior of young and old men. J Appl Physiol 87:843–852

    PubMed  CAS  Google Scholar 

  • Crone C, Nielsen J (1989) Spinal mechanisms in man contributing to reciprocal inhibition during voluntary dorsiflexion of the foot. J Physiol 416:255–272

    PubMed  CAS  Google Scholar 

  • D’Antona G, Pellegrino MA, Adami R, Rossi R, Carlizzi CN, Canepari M, Saltin B, Bottinelli R (2003) The effect of ageing and immobilization on structure and function of human skeletal muscle fibres. J Physiol 552:499–511

    Article  PubMed  CAS  Google Scholar 

  • De Serres SJ, Enoka RM (1998) Older adults can maximally activate the biceps brachii muscle by voluntary command. J Appl Physiol 84:284–291

    Article  PubMed  Google Scholar 

  • Doherty TJ, Brown WF (1993) The estimated numbers and relative sizes of thenar motor units as selected by multiple point stimulation in young and older adults. Muscle Nerve 16:355–366

    Article  PubMed  CAS  Google Scholar 

  • Doherty TJ, Brown WF (1997) Age-related changes in the twitch contractile properties of human thenar motor units. J Appl Physiol 82:93–101

    PubMed  CAS  Google Scholar 

  • Eisen A, Siejka S, Schulzer M, Calne D (1991) Age-dependent decline in motor evoked potential (MEP) amplitude: with a comment on changes in Parkinson’s disease. Electroencephalogr Clin Neurophysiol 81:209–215

    Article  PubMed  CAS  Google Scholar 

  • Esposito F, Malgrati D, Veicsteinas A, Orizio C (1996) Time and frequency domain analysis of electromyogram and sound myogram in the elderly. Eur J Appl Physiol 73:503–510

    CAS  Google Scholar 

  • Farina D, Merletti R, Enoka R (2004) The extraction of neural strategies from the surface EMG. J Appl Physiol 96:1486–1495

    Article  PubMed  Google Scholar 

  • Frontera WR, Hughes VA, Lutz KJ, Evans WJ (1991) A cross-sectional study of muscle strength and mass in 45- to 78-yr-old men and women. J Appl Physiol 71:644–650

    PubMed  CAS  Google Scholar 

  • Galganski ME, Fuglevand AJ, Enoka RM (1993) Reduced control of motor output in a human hand muscle of elderly subjects during submaximal contractions. J Neurophysiol 69:2108–2115

    PubMed  CAS  Google Scholar 

  • Hakkinen K, Alen M, Kallinen M, Izquierdo M, Jokelainen K, Lassila H, Mälkiä E, Kraemer WJ, Newton RU (1998) Muscle CSA, force production, and activation of leg extensors during isometric and dynamic actions in middle-aged and elderly men and women. J Aging Phys Act 6:232–247

    Google Scholar 

  • Harridge SDR, White MJ (1993) A comparison of voluntary and electrically evoked isokinetic plantar flexor torque in males. Eur J Appl Physiol 66:343–348

    Article  CAS  Google Scholar 

  • Harridge SDR, Kryger A, Stensgaard A (1999) Knee extensor strength, activation, and size in very elderly people following strength training. Muscle Nerve 22:831–839

    Article  PubMed  CAS  Google Scholar 

  • Herbert RD, Gandevia SC (1999) Twitch interpolation in human muscles: mechanisms and implications for measurement of voluntary activation. J Neurophysiol 82:2271–2283

    PubMed  CAS  Google Scholar 

  • Höök P, Sriramoju V, Larsson L (2001) Effects of aging on actin sliding speed on myosin from single skeletal muscle cells of mice, rats, and humans. Am J Physiol 280:C782–C788

    Google Scholar 

  • Hunter SK, Thompson MW, Ruell PA, Harmer AR, Thom JM, Gwinn TH, Adams RD (1999) Human skeletal sarcoplasmic reticulum Ca²+ uptake and muscle function with aging and strength training. J Appl Physiol 86:1858–1865

    PubMed  CAS  Google Scholar 

  • Hurley MV, Newham DJ (1993) The influence of arthrogenous muscle inhibition on quadriceps rehabilitation of patients with early, unilateral osteoarthritic knees. Br J Rheumatol 32:127–131

    Article  PubMed  CAS  Google Scholar 

  • Izquierdo M, Ibanez J, Gorostiaga E, Garrues M, Zuniga A, Anton A, Larrion JL, Hakkinen K (1999) Maximal strength and power characteristics in isometric and dynamic actions of the upper and lower extremities in middle-aged and older men. Acta Physiol Scand 167:57–68

    Article  PubMed  CAS  Google Scholar 

  • Jakobi JM, Rice CL (2002) Voluntary muscle activation varies with age and muscle group. J Appl Physiol 93:457–462

    PubMed  Google Scholar 

  • Kamen G, Sison SV, Du CC, Patten C (1995) Motor unit discharge behavior in older adults during maximal-effort contractions. J Appl Physiol 79:1908–1913

    PubMed  CAS  Google Scholar 

  • Keenan KG, Farina D, Maluf KS, Merletti R, Enoka RM (2005) Influence of amplitude cancellation on the simulated surface electromyogram. J Appl Physiol 98:120–131

    Article  PubMed  Google Scholar 

  • Kellis E (1998) Quantification of quadriceps and hamstring antagonist activity. Sports Med 25:37–62

    Article  PubMed  CAS  Google Scholar 

  • Kent-Braun JA, Le Blanc R (1996) Quantitation of central activation failure during maximal voluntary contractions in humans. Muscle Nerve 19:861–869

    Article  PubMed  CAS  Google Scholar 

  • Kent-Braun JA, Ng AV (1999) Specific strength and voluntary muscle activation in young and elderly women and men. J Appl Physiol 87:22–29

    PubMed  CAS  Google Scholar 

  • Kent-Braun JA, Ng AV, Doyle JW, Towse TF (2002) Human skeletal muscle responses vary with age and gender during fatigue due to incremental isometric exercise. J Appl Physiol 93:1813–1823

    PubMed  CAS  Google Scholar 

  • Klass M, Baudry S, Duchateau J (2005a) Aging does not affect voluntary activation of the ankle dorsiflexors during isometric, concentric, and eccentric contractions. J Appl Physiol 99:31–38

    Article  Google Scholar 

  • Klass M, Baudry S, Duchateau J (2005b) Contractile properties of single motor units in elderly. Comput Methods Biomech Biomed Engin (Suppl. 1):167–168

  • Klein CS, Rice CL, Marsh GD (2001) Normalized force, activation, and coactivation in the arm muscles of young and old men. J Appl Physiol 91:1341–1349

    PubMed  CAS  Google Scholar 

  • Lanza IR, Russ DW, Kent-Braun JA (2004) Age-related enhancement of fatigue resistance is evident in men during both isometric and dynamic tasks. J Appl Physiol 97:967–975

    Article  PubMed  Google Scholar 

  • Lexell J (1993) Ageing and human muscle: observations from Sweden. Can J Appl Physiol 18:2–18

    PubMed  CAS  Google Scholar 

  • Macaluso A, De Vito G (2004) Muscle strength, power and adaptations to resistant training in older people. Eur J Appl Physiol 91:450–472

    Article  PubMed  Google Scholar 

  • Macaluso A, Nimmo MA, Foster JE, Cockburn M, McMillan NC, De Vito G (2002) Contractile muscle volume and agonist-antagonist coactivation account for differences in torque between young and older women. Muscle Nerve 25:858–863

    Article  PubMed  Google Scholar 

  • Masakado Y, Noda Y, Nagata MA, Kimura A, Chino N, Akaboshi K (1994) Macro-EMG and motor unit recruitment threshold: differences between the young and the aged. Neurosci Lett 179:1–4

    Article  PubMed  CAS  Google Scholar 

  • McNeil CJ, Doherty TJ, Stashuk DW, Rice CL (2005) Motor unit number estimates in the tibialis anterior muscle of young, old, and very old men. Muscle Nerve 31:461–467

    Article  PubMed  Google Scholar 

  • Merton PA (1954) Voluntary strength and muscle fatigue. J Physiol 123:553–564

    PubMed  CAS  Google Scholar 

  • Miller M, Downham D, Lexell J (1999) Superimposed single impulse and pulse train electrical stimulation: a quantitative assessment during submaximal isometric knee extension in young, healthy men. Muscle Nerve 22:1038–1046

    Article  PubMed  CAS  Google Scholar 

  • Morse CI, Thom JM, Davis MG, Fox KR, Birch KM, Narici MV (2004) Reduced plantarflexor specific torque in the elderly is associated with a lower activation capacity. Eur J Appl Physiol 92:219–226

    Article  PubMed  Google Scholar 

  • Morse CI, Thom JM, Birch KM, Narici MV (2005) Tendon elongation influences the amplitude of interpolated doublets in the assessment of activation in elderly men. J Appl Physiol 98:221–226

    Article  PubMed  Google Scholar 

  • Narici MV, Maganaris CN (2006) Adaptability of elderly human muscles and tendons to increased loading. J Anat 208:433–443

    Article  PubMed  Google Scholar 

  • Narici MV, Maganaris CN, Reeves N (2002) Muscle and tendon adaptations to ageing and spaceflight. J Gravit Physiol 9:137–138

    Google Scholar 

  • Ochala J, Lambertz D, Pousson M, Goubel F, Van Hoecke J (2004) Changes in mechanical properties of human flexor muscles in ageing. Exp Gerontol 39:349–358

    Article  PubMed  Google Scholar 

  • Payne AM, Delbono O (2004) Neurogenesis of excitation–contraction uncoupling in aging skeletal muscle. Exerc Sport Sci Rev 32:36–40

    Article  PubMed  Google Scholar 

  • Philipps SK, Bruce SA, Newton D, Woledge RC (1992) The weakness of old age is not due to failure of muscle activation. J Gerontol 47A:M45–M49

    Google Scholar 

  • Pitcher JB, Ogston KM, Miles TS (2003) Age and sex differences in human motor cortex input–output characteristics. J Physiol 546:605–613

    Article  PubMed  CAS  Google Scholar 

  • Porter MM, Vandervoort AA, Kramer JF (1997) Eccentric peak torque of the plantar and dorsiflexors is maintained in older women. J Gerontol 52:B125–B131

    CAS  Google Scholar 

  • Pousson M, Lepers R, Van Hoeck J (2001) Changes in isokinetic torque and muscular activity of elbow flexors muscles with age. Exp Gerontol 36:1687–1698

    Article  PubMed  CAS  Google Scholar 

  • Roos MR, Rice CL, Vandervoort AA (1997) Age-related changes in motor unit function. Muscle Nerve 20:679–690

    Article  PubMed  CAS  Google Scholar 

  • Roos MR, Rice CL, Connelly DM, Vandervoort AA (1999) Quadriceps muscle strength, contractile properties, and motor units firing rates in young and old men. Muscle Nerve 22:1094–1103

    Article  PubMed  CAS  Google Scholar 

  • Semmler JG, Steege JW, Kornatz KW, Enoka RM (2000) Motor-unit synchronization is not responsible for lager motor-unit forces in old adults. J Neurophysiol 84:358–366

    PubMed  CAS  Google Scholar 

  • Simoneau E, Martin A, Van Hoecke J (2005) Muscular performances at the ankle joint in young and elderly men. J Gerontol 60A:439–447

    Google Scholar 

  • Stackhouse SK, Stevens JE, Lee SCK, Pearce KM, Snyder-Mackler L, Binder-Macleod SA (2001) Maximum voluntary activation in nonfatigued and fatigued muscle of young and elderly individuals. Phys Ther 81:1102–1109

    PubMed  CAS  Google Scholar 

  • Stevens JE, Binder-Masleod S, Snyder-Mackler L (2001) Characterization of the human quadriceps muscle in active elders. Arch Phys Med Rehabil 82:973–978

    Article  PubMed  CAS  Google Scholar 

  • Stevens JE, Stackhouse SK, Binder-Macleod SA, Snyder-Mackler L (2003) Are voluntary muscle activation deficits in older adults meaningful? Muscle Nerve 27:99–101

    Article  PubMed  Google Scholar 

  • Thomas DO, White MJ, Sagar G, Davies CT (1987) Electrically evoked isokinetic plantar flexor torque in males. J Appl Physiol 63:1499–1503

    PubMed  CAS  Google Scholar 

  • Valkeinen H, Ylinen J, Malkia E, Alen M, Hakkinen K (2002) Maximal force, force/time and activation/coactivation characteristics of the neck muscles in extension and flexion in healthy men and women at different ages. Eur J Appl Physiol 88:247–254

    Article  PubMed  Google Scholar 

  • Van Cutsem M, Duchateau J (2005) Preceding muscle activity influences motor unit discharge and rate of torque development during ballistic contractions in humans. J Physiol 15:635–644

    Google Scholar 

  • Vandervoort AA, McComas AJ (1986) Contractile changes in opposing muscles of the human ankle joint with aging. J Appl Physiol 61:361–367

    PubMed  CAS  Google Scholar 

  • Vandervoort AA, Kramer JF, Wharram ER (1990) Eccentric knee strength of elderly females. J Gerontol 45:B125–B128

    PubMed  CAS  Google Scholar 

  • Wang F-C, De Pasqua V, Delwaide PJ (1999) Age-related changes in fastest and slowest conducting axons of thenar motor units. Muscle Nerve 22:1022–1029

    Article  PubMed  CAS  Google Scholar 

  • White MJ, Harridge SDR (1990) At high angular velocities voluntary activation limits maximal isokinetic torque generation in elderly and young human triceps surae. J Physiol 429:52P

    Google Scholar 

  • Winegard KJ, Hicks AL, Vandervoort AA (1997) An evaluation of the length–tension relationship in elderly human plantarflexor muscles. J Gerontol A Biol Sci Med Sci 52:B337–B343

    PubMed  CAS  Google Scholar 

  • Yue GH, Ranganathan VK, Siemionov V, Liu JZ, Sahgal V (1999) Older adults exhibit a reduced ability to fully activate their biceps brachii muscle. J Gerontol 54A:249–253

    Google Scholar 

Download references

Acknowledgments

The authors are particularly grateful to Dr K. Maluf for useful comments on the paper and to A. Desseir for assistance in the preparation of the manuscript. Some experiments described in this review were performed with support from a grant of the European Community (contract QLK6-CT-2001-00323) and the Fonds National de la Recherche Scientifique of Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Duchateau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klass, M., Baudry, S. & Duchateau, J. Voluntary activation during maximal contraction with advancing age: a brief review. Eur J Appl Physiol 100, 543–551 (2007). https://doi.org/10.1007/s00421-006-0205-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-006-0205-x

Keywords

Navigation