Skip to main content
Log in

Minimal-invasives hämodynamisches Monitoring

Toy or tool?

Minimally invasive hemodynamic monitoring

Toy or tool?

  • Leitthema
  • Published:
Intensivmedizin und Notfallmedizin

Zusammenfassung

In den letzten Jahren konnte gezeigt werden, dass ein unzureichendes globales Sauerstoffangebot und die daraus resultierende Sauerstoffschuld verschiedener Organe wesentlich zur Morbidität und Mortalität intensivmedizinisch behandelter Patienten beitragen. Daher kommt der Überwachung des Sauerstoffstatus und insbesondere des Herzzeitvolumens (HZV) bei kritisch kranken Patienten eine große Bedeutung zu. Lange Zeit stellte der Pulmonalarterienkatheter die einzige Möglichkeit zur Messung des HZV dar. Aus Furcht vor den mit seinem Einsatz verbundenen Risiken wurde Patienten häufig ein erweitertes hämodynamisches Monitoring vorenthalten. Inzwischen wurde jedoch eine ganze Reihe weniger invasiver Verfahren zur Messung des HZV und/oder zur Abschätzung des Sauerstoffstatus in die klinische Routine eingeführt, sodass eine breitere Anwendung dieser Verfahren möglich erscheint. Verschiedene minimal-invasive Verfahren und die ihnen zugrunde liegende Technologie werden im vorliegenden Beitrag vorgestellt. Daneben soll gezeigt werden, wie durch den Einsatz des minimal-invasiven hämodynamischen Monitorings im Rahmen zielorientierter Therapiekonzepte das Outcome bestimmter Patientengruppen verbessert werden kann.

Abstract

Inadequate systemic oxygen delivery and the resulting oxygen debt of various organs have been demonstrated to be a major cause for the morbidity and mortality of intensive care unit patients. Hence, monitoring oxygen status and particularly cardiac output (CO) appear to be of essential importance when attempting to improve the outcome of critically ill patients. For a long time, measurement of CO was only possible with a pulmonary artery catheter. However, concerns about the inherent risks of pulmonary artery catheterization have driven the search for minimally or less invasive alternatives of hemodynamic monitoring, of which a number have been recently introduced into clinical routine. In the present review, the various new devices, including their technology and their efficacy in improving patient outcome when applying goal-directed therapy protocols, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Buhre W, Rex S (2008) Is continuous really continuous? Crit Care Med 36:628–630

    Article  PubMed  Google Scholar 

  2. Cecconi M, Dawson D, Grounds RM, Rhodes A (2009) Lithium dilution cardiac output measurement in the critically ill patient: determination of precision of the technique. Intensive Care Med 35:498–504

    Article  CAS  PubMed  Google Scholar 

  3. Chytra I, Pradl R, Bosman R et al (2007) Esophageal Doppler-guided fluid management decreases blood lactate levels in multiple-trauma patients: a randomized controlled trial. Crit Care 11:R24

    Article  PubMed  Google Scholar 

  4. Conway DH, Mayall R, Abdul-Latif MS et al (2002) Randomised controlled trial investigating the influence of intravenous fluid titration using oesophageal Doppler monitoring during bowel surgery. Anaesthesia 57:845–849

    Article  CAS  PubMed  Google Scholar 

  5. Critchley LA, Critchley JA (1999) A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput 15:85–91

    Article  CAS  PubMed  Google Scholar 

  6. Backer D de, Marx G, Tan A et al (2009) Arterial pressure based cardiac output monitoring: a multi-centre validation of the third generation software in septic patients. Intensive Care Med 35:13

    Article  Google Scholar 

  7. Waal EE de, Kalkman CJ, Rex S, Buhre WF (2007) Validation of a new arterial pulse contour-based cardiac output device. Crit Care Med 35:1904–1909

    Article  PubMed  Google Scholar 

  8. Waal EE de, Konings MK, Kalkman CJ, Buhre WF (2008) Assessment of stroke volume index with three different bioimpedance algorithms: lack of agreement compared to thermodilution. Intensive Care Med 34:735–739

    Article  PubMed  Google Scholar 

  9. Gan TJ, Soppitt A, Maroof M et al (2002) Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology 97:820–826

    Article  PubMed  Google Scholar 

  10. Godje O, Hoke K, Goetz AE et al (2002) Reliability of a new algorithm for continuous cardiac output determination by pulse-contour analysis during hemodynamic instability. Crit Care Med 30:52–58

    Article  PubMed  Google Scholar 

  11. Godje O, Peyerl M, Seebauer T et al (1998) Reproducibility of double indicator dilution measurements of intrathoracic blood volume compartments, extravascular lung water, and liver function. Chest 113:1070–1077

    Article  CAS  PubMed  Google Scholar 

  12. Goepfert MS, Reuter DA, Akyol D et al (2007) Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intensive Care Med 33:96–103

    Article  PubMed  Google Scholar 

  13. Hamzaoui O, Monnet X, Richard C et al (2008) Effects of changes in vascular tone on the agreement between pulse contour and transpulmonary thermodilution cardiac output measurements within an up to 6-hour calibration-free period. Crit Care Med 36:434–440

    Article  PubMed  Google Scholar 

  14. Hofer CK, Cecconi M, Marx G, della RG (2009) Minimally invasive haemodynamic monitoring. Eur J Anaesthesiol 26:996–1002

    Article  PubMed  Google Scholar 

  15. Howell MD, Donnino M, Clardy P et al (2007) Occult hypoperfusion and mortality in patients with suspected infection. Intensive Care Med 33:1892–1899

    Article  PubMed  Google Scholar 

  16. Kern JW, Shoemaker WC (2002) Meta-analysis of hemodynamic optimization in high-risk patients. Crit Care Med 30:1686–1692

    Article  PubMed  Google Scholar 

  17. Mayer J, Boldt J, Mengistu A et al (2010) Goal-directed intraoperative therapy based on autocalibrated arterial pressure waveform analysis reduces hospital stay in high-risk surgical patients: a randomized, controlled trial. Crit Care 14:R18

    Article  PubMed  Google Scholar 

  18. Mayer J, Boldt J, Poland R et al (2009) Continuous arterial pressure waveform-based cardiac output using the FloTrac/Vigileo: a review and meta-analysis. J Cardiothorac Vasc Anesth 23:401–406

    Article  PubMed  Google Scholar 

  19. McFall MR, Woods WG, Wakeling HG (2004) The use of oesophageal Doppler cardiac output measurement to optimize fluid management during colorectal surgery. Eur J Anaesthesiol 21:581–583

    CAS  PubMed  Google Scholar 

  20. McKendry M, McGloin H, Saberi D et al (2004) Randomised controlled trial assessing the impact of a nurse delivered, flow monitored protocol for optimisation of circulatory status after cardiac surgery. BMJ 329:258

    Article  PubMed  Google Scholar 

  21. Missant C, Rex S, Wouters PF (2008) Accuracy of cardiac output measurements with pulse contour analysis (PulseCO) and Doppler echocardiography during off-pump coronary artery bypass grafting. Eur J Anaesthesiol 25:243–248

    Article  CAS  PubMed  Google Scholar 

  22. Mythen MG, Webb AR (1995) Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg 130:423–429

    CAS  PubMed  Google Scholar 

  23. Noblett SE, Snowden CP, Shenton BK, Horgan AF (2006) Randomized clinical trial assessing the effect of Doppler-optimized fluid management on outcome after elective colorectal resection. Br J Surg 93:1069–1076

    Article  CAS  PubMed  Google Scholar 

  24. Ospina-Tascon GA, Cordioli RL, Vincent JL (2008) What type of monitoring has been shown to improve outcomes in acutely ill patients? Intensive Care Med 34:800–820

    Article  PubMed  Google Scholar 

  25. Pearse R, Dawson D, Fawcett J et al (2005) Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445]. Crit Care 9:R687–R693

    Article  PubMed  Google Scholar 

  26. Raaijmakers E, Faes TJ, Scholten RJ et al (1999) A meta-analysis of published studies concerning the validity of thoracic impedance cardiography. Ann NY Acad Sci 873:121–127

    Article  CAS  PubMed  Google Scholar 

  27. Raval NY, Squara P, Cleman M et al (2008) Multicenter evaluation of noninvasive cardiac output measurement by bioreactance technique. J Clin Monit Comput 22:113–119

    Article  PubMed  Google Scholar 

  28. Rhodes A, Sutherland GR (2005) Arterial pulse power analysis. The LiDCO-plus system. In: Pinsky MR, Payen D (Hrsg) Functional hemodynamic monitoring. Update in Intensive Care and Emergency Medicine, 42th edn. Springer, Berlin Heidelberg New York Tokyo, S 183–192

  29. Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  CAS  PubMed  Google Scholar 

  30. Sakka SG, Reinhart K, Meier-Hellmann A (1999) Comparison of pulmonary artery and arterial thermodilution cardiac output in critically ill patients. Intensive Care Med 25:843–846

    Article  CAS  PubMed  Google Scholar 

  31. Schober P, Loer SA, Schwarte LA (2009) Perioperative hemodynamic monitoring with transesophageal Doppler technology. Anesth Analg 109:340–353

    Article  PubMed  Google Scholar 

  32. Shoemaker WC, Wo CC, Thangathurai D et al (1999) Hemodynamic patterns of survivors and nonsurvivors during high risk elective surgical operations. World J Surg 23:1264–1270

    Article  CAS  PubMed  Google Scholar 

  33. Sinclair S, James S, Singer M (1997) Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial. BMJ 315:909–912

    CAS  PubMed  Google Scholar 

  34. Venn R, Steele A, Richardson P et al (2002) Randomized controlled trial to investigate influence of the fluid challenge on duration of hospital stay and perioperative morbidity in patients with hip fractures. Br J Anaesth 88:65–71

    Article  CAS  PubMed  Google Scholar 

  35. Wakeling HG, McFall MR, Jenkins CS et al (2005) Intraoperative oesophageal Doppler guided fluid management shortens postoperative hospital stay after major bowel surgery. Br J Anaesth 95:634–642

    Article  CAS  PubMed  Google Scholar 

  36. Wiener RS, Welch HG (2007) Trends in the use of the pulmonary artery catheter in the United States, 1993–2004. JAMA 298:423–429

    Article  CAS  PubMed  Google Scholar 

  37. Yamashita K, Nishiyama T, Yokoyama T et al (2008) The effects of vasodilation on cardiac output measured by PiCCO. J Cardiothorac Vasc Anesth 22:688–692

    Article  PubMed  Google Scholar 

  38. Zoremba N, Bickenbach J, Krauss B et al (2007) Comparison of electrical velocimetry and thermodilution techniques for the measurement of cardiac output. Acta Anaesthesiol Scand 51:1314–1319

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehungen hin: SR hat von der Firma Edwards Lifesciences GmbH, München, Deutschland, Honorare für Vorträge und beratende Tätigkeiten erhalten. WB hat von den Firmen Pulsion Medical Systems, München, und Edwards Lifesciences GmbH, München, Deutschland, Honorare für Vorträge und beratende Tätigkeiten erhalten.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rex.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metzelder, S., de Waal, E., Buhre, W. et al. Minimal-invasives hämodynamisches Monitoring. Intensivmed 47, 354–361 (2010). https://doi.org/10.1007/s00390-009-0146-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00390-009-0146-9

Schlüsselwörter

Keywords

Navigation