Skip to main content

Advertisement

Log in

Unjoined primary and secondary neural tubes: junctional neural tube defect, a new form of spinal dysraphism caused by disturbance of junctional neurulation

  • A.J. RAIMONDI ISPN AWARD
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

Primary and secondary neurulation are the two known processes that form the central neuraxis of vertebrates. Human phenotypes of neural tube defects (NTDs) mostly fall into two corresponding categories consistent with the two types of developmental sequence: primary NTD features an open skin defect, an exposed, unclosed neural plate (hence an open neural tube defect, or ONTD), and an unformed or poorly formed secondary neural tube, and secondary NTD with no skin abnormality (hence a closed NTD) and a malformed conus caudal to a well-developed primary neural tube.

Methods and results

We encountered three cases of a previously unrecorded form of spinal dysraphism in which the primary and secondary neural tubes are individually formed but are physically separated far apart and functionally disconnected from each other. One patient was operated on, in whom both the lumbosacral spinal cord from primary neurulation and the conus from secondary neurulation are each anatomically complete and endowed with functioning segmental motor roots tested by intraoperative triggered electromyography and direct spinal cord stimulation. The remarkable feature is that the two neural tubes are unjoined except by a functionally inert, probably non-neural band.

Conclusion

The developmental error of this peculiar malformation probably occurs during the critical transition between the end of primary and the beginning of secondary neurulation, in a stage aptly called junctional neurulation. We describe the current knowledge concerning junctional neurulation and speculate on the embryogenesis of this new class of spinal dysraphism, which we call junctional neural tube defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

BCR:

Bulbocavernous reflex

CIC:

Clean intermittent catheterization

CM:

Conus medullaris

EMG:

Electromyography

HH:

Hamburger-Hamilton

LDM:

Limited dorsal myeloschisis

mA:

Milliampere

MAC:

Minimum alveolar concentration

MET:

Mesenchyme-epithelial transition

MRI:

Magnetic resonance imaging

NSB:

Node streak border

NT:

Neural tube

NTD:

Neural tube defect

ONTD:

Open neural tube defect

RMC:

Retained medullary cord

siRNA:

Small interfering RNA

SSEP:

Somatosensory evoked potential

TcMEP:

Transcortical motor evoked potentials

References

  1. Beck CW, Slack JMW (1999) A developmental pathway controlling outgrowth of the Xenopus tail bud. Development 126(8):1611–1620

    CAS  PubMed  Google Scholar 

  2. Bosoi CM, Capra V, Allache R, Trinh VQ, De Marco P, Merello E, Drapeau P, Bassuk AG, Kibar Z (2011) Identification and characterization of novel rare mutations in the planar cell polarity gene PRICKLE1 in human neural tube defects. Hum Mutat 32:1371–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cai C, Shi O (2014) Genetic evidence in planar cell polarity signaling pathway in human neural tube defects. Front Med 8:68–78

    Article  PubMed  Google Scholar 

  4. Catala M, Teillet MA, De Robertis EM, Le Douarin ML (1996) A spinal cord fate map in the avian embryo: while regressing, Hensen's node lays down the notochord and floor plate thus joining the spinal cord lateral walls. Development 122:2599–2610

    CAS  PubMed  Google Scholar 

  5. Catala M, Teillet MA, Le Douarin ML (1995) Organization and development of the tail bud analyzed with the quail-chick chimaera system. Mech Dev 51:51–65

    Article  CAS  PubMed  Google Scholar 

  6. Colas JF, Schoenwolf GC (2001) Towards a cellular and molecular understanding of neurulation. Dev Dyn 221:117–145

    Article  CAS  PubMed  Google Scholar 

  7. Cooper O, Sweetman D, Wagstaff L, Munsterberg A (2008) Expression of avian prickle genes during early development and organogenesis. Dev Dyn 237:1442–1448

    Article  CAS  PubMed  Google Scholar 

  8. Copp AJ, Greene ND (2010) Genetics and development of neural tube defects. J Pathol 220:217–230

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Copp AJ, Greene ND, Murdoch JN (2003) The genetic basis of mammalian neurulation. Nat Rev Genet 4:784–793

    Article  PubMed  Google Scholar 

  10. Copp AJ, Stanier P, Greene ND (2013) Neural tube defects: recent advances, unsolved questions, and controversies. Lancet Neurol 12:799–810

    Article  PubMed  PubMed Central  Google Scholar 

  11. Criley BB (1969) Analysis of embryonic sources and mechanisms of development of posterior levels of chick neural tubes. J Morphol 128:465–501

    Article  CAS  PubMed  Google Scholar 

  12. Dady A, Blavet C, Duband JL (2012) Timing and kinetics of E- to N-cadherin switch during neurulation in the avian embryo. Dev Dyn 241:1333–1349

    Article  CAS  PubMed  Google Scholar 

  13. Dady A, Havis E, Escriou V, Catala M, Duband J-L (2014) Junctional neurulation: a unique developmental program shaping a discrete region of the spinal cord highly susceptible to neural tube defects. J Neurosci 34:13208–13221

    Article  PubMed  Google Scholar 

  14. Doudney K, Ybot-Gonzalez P, Patemotte C, Stevenson RE, Greene ND, Moore GE, Copp AJ, Stanier P (2005) Analysis of the planar cell polarity gene Vangl2 and its co-expressed paralogue Vangl1 in neural tube defect patients. Am J Med Genet A 136:90–92

    Article  CAS  PubMed  Google Scholar 

  15. Dzamba BJ, Jakab KR, Marsden M, Schwartz MA, DeSimone DW (2009) Cadherin adhesion, tissue tension, and noncanonical Wnt signaling regulate fibronectin matrix organization. Dev Cell 16:421–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eibach S, Moes G, Zovickian J, Pang D (2016) Limited dorsal myeloschisis associated with dermoid elements. Childs Nerv Syst.

    Google Scholar 

  17. Goto T, Davidson L, Asashima M, Keller R (2005) Planar cell polarity genes regulate polarized extracellular matrix deposition during frog gastrulation. Curr Biol 15:787–793

    Article  CAS  PubMed  Google Scholar 

  18. Griffith CM, Wiley MJ, Sanders EJ (1992) The vertebrate tail bud: three germ layers from one tissue. Anat Embryol 185:101–113

    Article  CAS  PubMed  Google Scholar 

  19. Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Article  CAS  PubMed  Google Scholar 

  20. Harris MJ, Juriloff DM (2010) An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure. Birth Defects Res A Clin Mol Teratol 88:653–669

    Article  CAS  PubMed  Google Scholar 

  21. Harris MJ, Juriloff DM (2007) Mouse mutants with neural tube closure defects and their role in understanding human neural tube defects. Birth Defects Res A Clin Mol Teratol 79:187–210

    Article  CAS  PubMed  Google Scholar 

  22. Hughes AF, Freeman RB (1974) Comparative remarks on the development of the tail cord among higher vertebrates. J Embryol Exp Morphol 32:355–363

    CAS  PubMed  Google Scholar 

  23. Kostovic-Knezevic L, Gajovic S, Svajger A (1991) Morphogenetic features in the tail region of the rat embryo. Int J Dev Biol 35(3):191–195

    CAS  PubMed  Google Scholar 

  24. Lemire RJ, Shepard TH, Alvord EC Jr (1965) Caudal myeloschisis (lumbo-sacral spina bifida cystica) in a five millimeter (horizon xiv) human embryo. Anat Rec 152:9–16

    Article  CAS  PubMed  Google Scholar 

  25. Lowery LA, Sive H (2004) Strategies of vertebrate neurulation and re-evaluation of teleost neural tube formation. Mech Dev 121(10):1189–1197

    Article  CAS  PubMed  Google Scholar 

  26. Mills CL, Bellairs R (1989) Mitosis and cell death in the tail of chick embryo. Anat Embryol 180(3):301–308

    Article  CAS  PubMed  Google Scholar 

  27. Mueller F, O'Rahilly R (1987) The development of the human brain, the closure of the caudal neuropore, and the beginning of secondary neurulation at stage 12. Anat Embryol 176(4):413–430

    Article  Google Scholar 

  28. Mueller F, O'Rahilly R (2004) The primitive streak, the caudal eminence and related structures in staged human embryos. Cells Tissue Organs 177(1):2–20

    Article  Google Scholar 

  29. Nakaya Y, Kuroda S, Katagiri YT, Kaibuchi K, Takahashi Y (2004) Mesenchymal-epithelial transition during somitic segmentation is regulated by differential roles of Cdc42 and Rac1. Dev Cell 7:425–438

    Article  CAS  PubMed  Google Scholar 

  30. Nievelstein RA, Hartwig NG, Vermeij-Keers C, Valk J (1993) Embryonic development of the mammalian caudal neural tube. Teratology 48:21–31

    Article  CAS  PubMed  Google Scholar 

  31. O'Rahilly R, Muller F (1994) Neurulation in the normal human embryo. CIBA Found Symp 181:70–89

    PubMed  Google Scholar 

  32. O'Rahilly R, Muller F (2003) Somites, spinal ganglia, and centra: enumeration and interrelationships in staged human embryos, and implications for neural tube defects. Cells Tiss Org 173:75–92

    Article  Google Scholar 

  33. Pang D, Zovickian J, Lee JY, Moes GS, Wang KC (2012) Terminal myelocystocele: surgical observations and theory of embryogenesis. Neurosurgery 70:1383–1405

    Article  PubMed  Google Scholar 

  34. Pang D, Zovickian J, Moes GS (2011) Retained medullary cord in humans: late arrest of secondary neurulation. Neurosurgery 68:1500–1519

    Article  PubMed  Google Scholar 

  35. Pang D, Zovickian J, Ovieda A (2009) Long term outcome of total and near total resection of spinal cord lipomas and radical reconstruction of the neural placode part I: surgical technique. Neurosurgery 65:511–529

    Article  PubMed  Google Scholar 

  36. Pang D, Zovickian J, Oviedo A, Moes GS (2010) Limited dorsal myeloschisis: a distinctive clinicopathological entity. Neurosurgery 67:1555–1580

    Article  PubMed  Google Scholar 

  37. Pang D, Zovickian Z, Wong ST, Hou YJ, Moes GS (2013) Limited dorsal myeloschisis: a not-so-rare form of primary neurulation defect. Childs Nerv Syst 29:1459–1484

    Article  PubMed  Google Scholar 

  38. Pang D (2010) Electrophysiological monitoring for tethered cord surgery. In: Yamada S (ed) Tethered cord syndrome. Thieme Medical Publishers, New York, Stuttgart, pp. 199–209

    Google Scholar 

  39. Pang D (2010) Intraoperative neurophysiology of the conus medullaris and cauda equina. Childs Nerv Syst 26:411–412

    Article  PubMed  Google Scholar 

  40. Pang D (1993) Sacral agenesis and caudal spinal cord malformation. Neurosurgery 32(5):755–779

    Article  CAS  PubMed  Google Scholar 

  41. Saitsu H, Yamada S, Uwabe C (2007) Aberrant differentiation of the axially condensed tail bud mesenchyme in human embryos with lumbosacral myeloschisis. Anat Rec 290:251–258

    Article  Google Scholar 

  42. Saitsu H, Yamada S, Uwabe C, Ishibashi M, Shiota K (2004) Development of the posterior neural tube in human embryos. Anat Embryol 209:107–117

    PubMed  Google Scholar 

  43. Saraga-Babic M, Krolo M, Sapunar D, Terzic J, Biocic M (1996) Differences in origin and fate between the cranial and caudal spinal cord during normal and disturbed human development. Acta Neuropathol 91(2):194–199

    Article  CAS  PubMed  Google Scholar 

  44. Schoenwolf GC, Delongo J (1980) Ultrastructure of secondary neurulation in the chick embryo. Am J Anat 158:43–63

    Article  CAS  PubMed  Google Scholar 

  45. Schoenwolf GC, Smith JL (2000) Mechanisms of neurulation. Methods Mol Biol 136:125–134

    CAS  PubMed  Google Scholar 

  46. Schoenwolf GC (1984) Histological and ultrastructure studies of secondary neurulation in mouse embryos. Am J Anat 169:361–376

    Article  CAS  PubMed  Google Scholar 

  47. Shimokita E, Takahashi Y (2011) Secondary neurulation: fate-mapping and gene manipulation of the neural tube in tail bud. Develop Growth Differ 53:401–411

    Article  Google Scholar 

  48. Swalla BJ (1993) Mechanisms of gastrulation and tail formation in ascidians. Microsc Res Tech 26(4):274–284

    Article  CAS  PubMed  Google Scholar 

  49. Tam PPL (1984) The histogenetic capacity of tissues in the caudal end of the embryonic axis of the mouse. J Embryol Exp Mophol 82:253–266

    CAS  Google Scholar 

  50. Tao H, Suzuki M, Kiyonari H, Abe T, Sasaoka T, Ueno N (2009) Mouse prickle1, the homolog of a PCP gene, is essential for epiblast apical-basal polarity. Proc Natl Acad Sci U S A 106:14426–14431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142

    Article  CAS  PubMed  Google Scholar 

  52. Wallingford JB, Niswander LA, Shaw GM, Finnel RH (2013) The continuing challenge of understanding, preventing and treating neural tube defects. Science 339:1222002

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yang HJ, Wang KC, Chi JG, Lee MS, Lee YJ, Kim SK, Lee CS, Cho BK (2006) Cytokinetics of secondary neurulation in chick embryos: Hamburger and Hamilton stages 16-45. Childs Nerv Syst 22:567–571

  54. Yang HJ, Wang KC, Chi JG, Lee YJ, Kim SK, Cho BK (2003) Neural differentiation of caudal cell mass (secondary neurulation) in chick embryos: Hamburger and Hamilton stages 16-45. Dev Brain Res 142:31–36

    Article  CAS  Google Scholar 

  55. Ybot-Gonzalez P, Savery D, Gerrelli D, Signore M, Mitchell CE, Faux CH, Greene ND, Copp AJ (2007) Convergent extension, planar-cell-polarity signalling and initiation of mouse neural tube closure. Development 134:789–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dachling Pang.

Ethics declarations

Conflict of interest

There is no conflict of interest involved in the preparation of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eibach, S., Moes, G., Hou, Y.J. et al. Unjoined primary and secondary neural tubes: junctional neural tube defect, a new form of spinal dysraphism caused by disturbance of junctional neurulation. Childs Nerv Syst 33, 1633–1647 (2017). https://doi.org/10.1007/s00381-016-3288-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-016-3288-7

Keywords

Navigation