Skip to main content
Log in

Tactile perceptual learning: learning curves and transfer to the contralateral finger

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Tactile perceptual learning has been shown to improve performance on tactile tasks, but there is no agreement about the extent of transfer to untrained skin locations. The lack of such transfer is often seen as a behavioral index of the contribution of early somatosensory brain regions. Moreover, the time course of improvements has never been described explicitly. Sixteen subjects were trained on the Ludvigh task (a tactile vernier task) on four subsequent days. On the fifth day, transfer of learning to the non-trained contralateral hand was tested. In five subjects, we explored to what extent training effects were retained approximately 1.5 years after the final training session, expecting to find long-term retention of learning effects after training. Results showed that tactile perceptual learning mainly occurred offline, between sessions. Training effects did not transfer initially, but became fully available to the untrained contralateral hand after a few additional training runs. After 1.5 years, training effects were not fully washed out and could be recuperated within a single training session. Interpreted in the light of theories of visual perceptual learning, these results suggest that tactile perceptual learning is not fundamentally different from visual perceptual learning, but might proceed at a slower pace due to procedural and task differences, thus explaining the apparent divergence in the amount of transfer and long-term retention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. One subject (subject 15) was excluded from the analysis due to a missing value for the last staircase of the non-dominant hand on the fifth day.

Abbreviations

ANOVA:

Analysis of variance

BSRD:

Between Session Relative Decrease

LI:

Learning Index

RA:

Rapidly adapting

RHT:

Reverse hierarchy theory

SA1:

Slowly adapting type 1

S1:

Primary somatosensory cortex

S2:

Secondary somatosensory cortex

WSRD:

Within-Session Relative Decrease

References

  • Aberg KC, Tartaglia EM, Herzog MH (2009) Perceptual learning with Chevrons requires a minimal number of trials, transfers to untrained directions, but does not require sleep. Vis Res 49(16):2087–2094. doi:10.1016/j.visres.2009.05.020

    Article  PubMed  Google Scholar 

  • Adini Y, Sagi D, Tsodyks M (2002) Context-enabled learning in the human visual system. Nature 415(6873):790–793. doi:10.1038/415790a

    Article  PubMed  Google Scholar 

  • Ahissar M, Hochstein S (2004) The reverse hierarchy theory of visual perceptual learning. Trends Cogn Sci 8(10):457–464. doi:10.1016/j.tics.2004.08.011

    Article  PubMed  Google Scholar 

  • Ahissar M, Nahum M, Nelken I, Hochstein S (2009) Reverse hierarchies and sensory learning. Philos Trans R Soc Lond B Biol Sci 364:285–299. doi:10.1098/rstb.2008.0253

    Article  PubMed  Google Scholar 

  • Ball K, Sekuler R (1987) Direction-specific improvement in motion discrimination. Vis Res 27(6):953–965

    Article  PubMed  CAS  Google Scholar 

  • Bejjanki VR, Beck JM, Lu ZL, Pouget A (2011) Perceptual learning as improved probabilistic inference in early sensory areas. Nat Neurosci 14(5):642–648. doi:10.1038/nn.2796

    Article  PubMed  CAS  Google Scholar 

  • Censor N, Sagi D, Cohen LG (2012) Common mechanisms of human perceptual and motor learning. Nat Rev Neurosci 13(9):658–664. doi:10.1038/nrn3315

    Article  PubMed  CAS  Google Scholar 

  • Crist RE, Kapadia MK, Westheimer G, Gilbert CD (1997) Perceptual learning of spatial localization: specificity for orientation, position, and context. J Neurophysiol 78(6):2889–2894

    PubMed  CAS  Google Scholar 

  • De Weerd P, Reithler J, van de Ven V, Been M, Jacobs C, Sack AT (2012) Posttraining transcranial magnetic stimulation of striate cortex disrupts consolidation early in visual skill learning. J Neurosci 32:1981–1988. doi:10.1523/JNEUROSCI.3712-11.2011

    Article  PubMed  Google Scholar 

  • Dill M, Fahle M (1997) The role of visual field position in pattern-discrimination learning. Proc Biol Sci 264(1384):1031–1036. doi:10.1098/rspb.1997.0142

    Google Scholar 

  • Dinse HR, Kleibel N, Kalisch T, Ragert P, Wilimzig C, Tegenthoff M (2006) Tactile coactivation resets age-related decline of human tactile discrimination. Ann Neurol 60(1):88–94. doi:10.1002/ana.20862

    Article  PubMed  Google Scholar 

  • Dosher BA, Lu ZL (2007) The functional form of performance improvements in perceptual learning rates and transfer. Psychol Sci 18(6):531–539

    Article  PubMed  Google Scholar 

  • Duncan RO, Boynton GM (2007) Tactile hyperacuity thresholds correlate with finger maps in primary somatosensory cortex (S1). Cereb Cortex (New York, NY: 1991) 17:2878–2891. doi:10.1093/cercor/bhm015

  • Fahle M, Edelman S, Poggio T (1995) Fast perceptual learning in hyperacuity. Vis Res 35:3003–3013

    Article  PubMed  CAS  Google Scholar 

  • Grant AC, Thiagarajah MC, Sathian K (2000) Tactile perception in blind Braille readers: a psychophysical study of acuity and hyperacuity using gratings and dot patterns. Percept Psychophys 62(2):301–312

    Article  PubMed  CAS  Google Scholar 

  • Harris JA, Harris IM, Diamond ME (2001) The topography of tactile learning in humans. J Neurosci 21(3):1056–1061

    PubMed  CAS  Google Scholar 

  • Herzog MH, Aberg KC, Fremaux N, Gerstner W, Sprekeler H (2012) Perceptual learning, roving and the unsupervised bias. Vis Res 61:95–99. doi:10.1016/j.visres.2011.11.001

    Article  PubMed  Google Scholar 

  • Huang CB, Lu ZL, Dosher BA (2012) Co-learning analysis of two perceptual learning tasks with identical input stimuli supports the reweighting hypothesis. Vis Res 61:25–32. doi:10.1016/j.visres.2011.11.003

    Article  PubMed  Google Scholar 

  • Johansson RS (1978) Tactile sensibility in the human hand: receptive field characteristics of mechanoreceptive units in the glabrous skin area. J Physiol 281:101–125

    PubMed  CAS  Google Scholar 

  • Johansson RS, Vallbo AB (1979) Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J Physiol 286:283–300

    PubMed  CAS  Google Scholar 

  • Kalisch T, Tegenthoff M, Dinse HR (2007) Differential effects of synchronous and asynchronous multifinger coactivation on human tactile performance. BMC Neurosci 8:58. doi:10.1186/1471-2202-8-58

    Article  PubMed  Google Scholar 

  • Karni A, Bertini G (1997) Learning perceptual skills: behavioral probes into adult cortical plasticity. Curr Opin Neurobiol 7(4):530–535

    Article  PubMed  CAS  Google Scholar 

  • Karni A, Sagi D (1991) Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. Proc Natl Acad Sci USA 88(11):4966–4970

    Article  PubMed  CAS  Google Scholar 

  • Karni A, Sagi D (1993) The time course of learning a visual skill. Nature 365:250–252

    Article  PubMed  CAS  Google Scholar 

  • Law CT, Gold JI (2008) Neural correlates of perceptual learning in a sensory-motor, but not a sensory, cortical area. Nat Neurosci 11(4):505–513. doi:10.1038/nn2070

    Article  PubMed  CAS  Google Scholar 

  • Loomis JM (1979) An investigation of tactile hyperacuity. Sens Process 3:289–302

    CAS  Google Scholar 

  • Mulder-Hajonides van der Meulen WREH (1981) Measurement of subjective sleep quality. Elsevier, Amsterdam

    Google Scholar 

  • Nagarajan SS, Blake DT, Wright BA, Byl N, Merzenich MM (1998) Practice-related improvements in somatosensory interval discrimination are temporally specific but generalize across skin location, hemisphere, and modality. J Neurosci 18(4):1559–1570

    PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113

    Article  PubMed  CAS  Google Scholar 

  • Otto TU, Herzog MH, Fahle M, Zhaoping L (2006) Perceptual learning with spatial uncertainties. Vision Res 46(19):3223–3233. doi:10.1016/j.visres.2006.03.021

    Google Scholar 

  • Petrov AA, Dosher BA, Lu ZL (2005) The dynamics of perceptual learning: an incremental reweighting model. Psychol Rev 112(4):715–743. doi:10.1037/0033-295X.112.4.715

    Article  PubMed  Google Scholar 

  • Pleger B, Foerster AF, Ragert P, Dinse HR, Schwenkreis P, Malin JP, Nicolas V, Tegenthoff M (2003) Functional imaging of perceptual learning in human primary and secondary somatosensory cortex. Neuron 40:643–653

    Article  PubMed  CAS  Google Scholar 

  • Ragert P, Kalisch T, Bliem B, Franzkowiak S, Dinse HR (2008) Differential effects of tactile high- and low-frequency stimulation on tactile discrimination in human subjects. BMC Neurosci 9:9. doi:10.1186/1471-2202-9-9

    Article  PubMed  Google Scholar 

  • Saarinen J, Levi DM (1995) Perceptual learning in vernier acuity: what is learned? Vis Res 35(4):519–527

    Article  PubMed  CAS  Google Scholar 

  • Sathian K, Zangaladze A (1997) Tactile learning is task specific but transfers between fingers. Percept Psychophys 59:119–128

    Article  PubMed  CAS  Google Scholar 

  • Sathian K, Zangaladze A (1998) Perceptual learning in tactile hyperacuity: complete intermanual transfer but limited retention. Exp Brain Res 118:131–134

    Article  PubMed  CAS  Google Scholar 

  • Schoups AA, Vogels R, Orban GA (1995) Human perceptual learning in identifying the oblique orientation: retinotopy, orientation specificity and monocularity. J Physiol 483(Pt 3):797–810

    PubMed  CAS  Google Scholar 

  • Schoups A, Vogels R, Qian N, Orban G (2001) Practising orientation identification improves orientation coding in V1 neurons. Nature 412(6846):549–553. doi:10.1038/35087601

    Google Scholar 

  • Schwartz S, Maquet P, Frith C (2002) Neural correlates of perceptual learning: a functional MRI study of visual texture discrimination. Proc Natl Acad Sci USA 99(26):17137–17142. doi:10.1073/pnas.242414599

    Article  PubMed  CAS  Google Scholar 

  • Seitz AR, Dinse HR (2007) A common framework for perceptual learning. Curr Opin Neurobiol 17(2):148–153. doi:10.1016/j.conb.2007.02.004

    Article  PubMed  CAS  Google Scholar 

  • Spengler F, Roberts TP, Poeppel D, Byl N, Wang X, Rowley Ha, Merzenich MM (1997) Learning transfer and neuronal plasticity in humans trained in tactile discrimination. Neurosci Lett 232:151–154

    Article  PubMed  CAS  Google Scholar 

  • Stilla R, Hanna R, Hu X, Mariola E, Deshpande G, Sathian K (2008) Neural processing underlying tactile microspatial discrimination in the blind: a functional magnetic resonance imaging study. J Vis 8(10):13 11–19. doi:10.1167/8.10.13

    Google Scholar 

  • Tartaglia EM, Aberg KC, Herzog MH (2009) Perceptual learning and roving: stimulus types and overlapping neural populations. Vis Res 49(11):1420–1427. doi:10.1016/j.visres.2009.02.013

    Article  PubMed  Google Scholar 

  • Watanabe T, Nanez JE Sr, Koyama S, Mukai I, Liederman J, Sasaki Y (2002) Greater plasticity in lower-level than higher-level visual motion processing in a passive perceptual learning task. Nat Neurosci 5(10):1003–1009. doi:10.1038/nn915nn915

    Article  PubMed  CAS  Google Scholar 

  • Wilson HR (1986) Responses of spatial mechanisms can explain hyperacuity. Vis Res 26(3):453–469

    Article  PubMed  CAS  Google Scholar 

  • Wright BA, Sabin AT (2007) Perceptual learning: how much daily training is enough? Exp Brain Res 180(4):727–736. doi:10.1007/s00221-007-0898-z

    Article  PubMed  Google Scholar 

  • Xiao LQ, Zhang JY, Wang R, Klein SA, Levi DM, Yu C (2008) Complete transfer of perceptual learning across retinal locations enabled by double training. Curr Biol 18(24):1922–1926. doi:10.1016/j.cub.2008.10.030

    Article  PubMed  CAS  Google Scholar 

  • Yotsumoto Y, Watanabe T, Sasaki Y (2008) Different dynamics of performance and brain activation in the time course of perceptual learning. Neuron 57(6):827–833. doi:10.1016/j.neuron.2008.02.034

    Article  PubMed  CAS  Google Scholar 

  • Yotsumoto Y, Sasaki Y, Chan P, Vasios CE, Bonmassar G, Ito N, Nanez JE Sr, Shimojo S, Watanabe T (2009) Location-specific cortical activation changes during sleep after training for perceptual learning. Curr Biol 19(15):1278–1282. doi:10.1016/j.cub.2009.06.011

    Article  PubMed  CAS  Google Scholar 

  • Zhang JY, Zhang GL, Xiao LQ, Klein SA, Levi DM, Yu C (2010a) Rule-based learning explains visual perceptual learning and its specificity and transfer. J Neurosci 30(37):12323–12328. doi:10.1523/JNEUROSCI.0704-10.2010

    Article  PubMed  CAS  Google Scholar 

  • Zhang T, Xiao LQ, Klein SA, Levi DM, Yu C (2010b) Decoupling location specificity from perceptual learning of orientation discrimination. Vis Res 50(4):368–374

    Article  PubMed  Google Scholar 

  • Zhou Y, Huang C, Xu P, Tao L, Qiu Z, Li X, Lu Z-L (2006) Perceptual learning improves contrast sensitivity and visual acuity in adults with anisometropic amblyopia. Vis Res 46(5):739–750

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the BrainGain Smart Mix Programme of the Netherlands Ministry of Economic Affairs and the Netherlands Ministry of Education, Culture and Science. We thank Caroline Benjamins and Bart Aben for their help in data acquisition, Prof. Jack Loomis for his advice and Prof. Krish Sathian for providing details on his stimulus design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda L. Kaas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 56 kb)

221_2012_3329_MOESM2_ESM.tif

Supplementary material figure 1: Within-session relative improvement dominant hand The estimated marginal means for the within-session decrease of session one to four for the dominant hand, expressed as the percentage change of staircase two, three and four with respect to the first staircase in the session. The value for the percentage change on the first staircase was set to zero for illustration purposes. The error bars indicate the (between subject) standard error of the mean. (TIFF 310 kb)

221_2012_3329_MOESM3_ESM.tif

Supplementary material figure 2: Learning rate dominant vs. non-dominant hand (on second session) The estimated marginal means for the within-session decrease of the second session of the dominant hand (day 2) and non-dominant hand (day 5), expressed as the percentage change of staircase two, three and four with respect to the first staircase in the session. The value for the percentage change on the first staircase was set to zero for illustration purposes. The error bars indicate the (between subject) standard error of the mean. (TIFF 486 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaas, A.L., van de Ven, V., Reithler, J. et al. Tactile perceptual learning: learning curves and transfer to the contralateral finger. Exp Brain Res 224, 477–488 (2013). https://doi.org/10.1007/s00221-012-3329-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3329-8

Keywords

Navigation