Skip to main content
Log in

Impaired anticipatory control of force sharing patterns during whole-hand grasping in Parkinson’s disease

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We examined the coordination of multi-digit grasping forces as they developed during object grasping and lifting. Ten subjects with Parkinson’s disease (PD; OFF and ON medication) and ten healthy age-matched control subjects lifted a manipulandum that measured normal forces at each digit and the manipulandum’s position. The center of mass (CM) was changed from trial to trial in either a predictable (blocked) or unpredictable (random) order. All subjects modulated individual fingertip forces to counterbalance forces exerted by the thumb and minimize object tilt after lift-off. However, subjects with PD OFF exhibited an impaired ability to use anticipatory mechanisms resulting in less differentiated scaling of individual finger forces to the object CM location. Remarkably, these between-group differences in force modulation dissipated as subjects reached peak grip forces during object lift, although these occurred significantly later in subjects with PD OFF than controls and PD ON. Analysis of the tilt of the object during lift revealed all subjects had similar deviations of the object from the vertical, the direction of which depended on CM location. Thus these findings in subjects with PD indicate that: (a) PD-induced impairments in anticipatory force mechanisms appear to be greatly increased in multi-digit grasping as opposed to previous reports from two-digit grasping; (b) inaccurate scaling of fingertip force amplitude and sharing patterns before object lift is recovered during object lift; (c) the implementation of appropriate force amplitude and sharing among the digits during the lift occurs significantly later than for controls; (d) medication improves the temporal recovery of multi-digit force coordination. These results are discussed within the framework of PD-related deficits in sensorimotor integration and control of multi-degrees of freedom movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamovich SV, Berkinblit MB, Hening W, Sage J, Poizner H (2001) The interaction of visual and proprioceptive inputs in pointing to actual and remembered targets in Parkinson’s disease. Neuroscience 104:1027–1041

    Article  PubMed  CAS  Google Scholar 

  • Alberts JL, Elder CM, Okun MS, Vitek JL (2004) Comparison of pallidal and subthalamic stimulation on force control in patient’s with Parkinson’s disease. Motor Control 8:484–499

    PubMed  Google Scholar 

  • Benecke R, Rothwell JC, Dick JP, Day BL, Marsden CD (1986) Performance of simultaneous movements in patients with Parkinson’s disease. Brain 109:739–757

    Article  PubMed  Google Scholar 

  • Bertram CP, Lemay M, Stelmach GE (2005) The effect of Parkinson’s disease on the control of multi-segmental coordination. Brain Cogn 57:16

    Article  PubMed  Google Scholar 

  • Beuter A, Milton JG, Labrie C, Glass L, Gauthier S (1990) Delayed visual feedback and movement control in Parkinson’s disease. Exp Neurol 110:228–235

    Article  PubMed  CAS  Google Scholar 

  • Bloxham CA, Mindel TA, Frith CD (1984) Initiation and execution of predictable and unpredictable movements in Parkinson’s disease. Brain 107:371–384

    Article  PubMed  Google Scholar 

  • Bonfiglioli C, De Berti G, Nichelli P, Nicoletti R, Castiello U (1998) Kinematic analysis of the reach to grasp movement in Parkinson’s and Huntington’s disease subjects. Neuropsychologia 36:1203–1208

    Article  PubMed  CAS  Google Scholar 

  • Castiello U, Bennett KM, Bonfiglioli C, Peppard RF (2000) The reach-to-grasp movement in Parkinson’s disease before and after dopaminergic medication. Neuropsychologia 38:46–59

    Article  PubMed  CAS  Google Scholar 

  • Evarts EV, Teravainen H, Calne DB (1981) Reaction time in Parkinson’s disease. Brain 104:167–186

    Article  PubMed  CAS  Google Scholar 

  • Fellows SJ, Noth J (2004) Grip force abnormalities in de novo Parkinson’s disease. Mov Disord 19:560–565

    Article  PubMed  Google Scholar 

  • Fellows SJ, Noth J, Schwarz M (1998) Precision grip and Parkinson’s disease. Brain 121(Pt 9):1771–1784

    Article  PubMed  Google Scholar 

  • Fellows SJ, Kronenburger M, Allert N, Coenen VA, Fromm C, Noth J, Weiss PH (2006) The effect of subthalamic nucleus deep brain stimulation on precision grip abnormalities in Parkinson’s disease. Parkinsonism Relat Disord 12:149–154

    Article  PubMed  Google Scholar 

  • Flowers KA (1976) Visual “closed-loop” and “open-loop” characteristics of voluntary movement in patients with Parkinsonism and intention tremor. Brain 99:269–310

    Article  PubMed  CAS  Google Scholar 

  • Forssberg H, Ingvarsson PE, Iwasaki N, Johansson RS, Gordon AM (2000) Action tremor during object manipulation in Parkinson’s disease. Mov Disord 15:244–254

    Article  PubMed  CAS  Google Scholar 

  • Gauntlett-Gilbert J, Brown VJ (1998) Reaction time deficits and Parkinson’s disease. Neurosci Biobehav Rev 22:865–881

    Article  PubMed  CAS  Google Scholar 

  • Gentilucci M, Negrotti A (1999) The control of an action in Parkinson’s disease. Exp Brain Res 129:269–277

    Article  PubMed  CAS  Google Scholar 

  • Georgiou N, Iansek R, Bradshaw JL, Phillips JG, Mattingley JB, Bradshaw JA (1993) An evaluation of the role of internal cues in the pathogenesis of parkinsonian hypokinesia. Brain 116(Pt 6):1575–1587

    Article  PubMed  Google Scholar 

  • Gordon AM (1997) Object release in patients with Parkinson’s disease. Neurosci Lett 232:1–4

    Article  PubMed  CAS  Google Scholar 

  • Gordon AM (1998) Task-dependent deficits during object release in Parkinson’s disease. Exp Neurol 153:287

    Article  PubMed  CAS  Google Scholar 

  • Gordon AM, Reilmann R (1999) Getting a grasp on research: does treatment taint testing of parkinsonian patients? Brain 122:1597–1598

    Article  PubMed  Google Scholar 

  • Gordon AM, Ingvarsson PE, Forssberg H (1997) Anticipatory control of manipulative forces in Parkinson’s disease. Exp Neurol 145:477–488

    Article  PubMed  CAS  Google Scholar 

  • Gordon AM, Lee JH, Flament D, Ugurbil K, Ebner TJ (1998) Functional magnetic resonance imaging of motor, sensory, and posterior parietal cortical areas during performance of sequential typing movements. Exp Brain Res 121:153

    Article  PubMed  CAS  Google Scholar 

  • Harrington DL, Haaland KY (1991) Sequencing in Parkinson’s disease—abnormalities in programming and controlling movement. Brain 114(Pt 1A):99–115

    PubMed  Google Scholar 

  • Haslinger B, Erhard P, Kampfe N, Boecker H, Rummeny E, Schwaiger M, Conrad B, Ceballos-Baumann AO (2001) Event-related functional magnetic resonance imaging in Parkinson’s disease before and after levodopa. Brain 124:558–570

    Article  PubMed  CAS  Google Scholar 

  • Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442

    Article  PubMed  CAS  Google Scholar 

  • Ingvarsson PE, Gordon AM, Forssberg H (1997) Coordination of manipulative forces in Parkinson’s disease. Exp Neurol 145:489

    Article  PubMed  CAS  Google Scholar 

  • Johnson AM, Vernon PA, Almeida QJ, Grantier LL, Jog MS (2003) A role of the basal ganglia in movement: the effect of precues on discrete bi-directional movements in Parkinson’s disease. Motor Control 7:71–81

    PubMed  Google Scholar 

  • Kelly VE, Hyngstrom AS, Rundle MM, Bastian AJ (2002) Interaction of levodopa and cues on voluntary reaching in Parkinson’s disease. Mov Disord 17:38–44

    Article  PubMed  Google Scholar 

  • Kim SW, Shim JK, Zatsiorsky VM, Latash ML (2006) Anticipatory adjustments of multi-finger synergies in preparation for self-triggered perturbations. Exp Brain Res 174:604–612

    Article  PubMed  Google Scholar 

  • Mattay VS, Tessitore A, Callicott JH, Bertolino A, Goldberg TE, Chase TN, Hyde TM, Weinberger DR (2002) Dopaminergic modulation of cortical function in patients with Parkinson’s disease. Ann Neurol 51:156–164

    Article  PubMed  CAS  Google Scholar 

  • Muller F, Abbs JH (1990) Precision grip in parkinsonian patients. Adv Neurol 53:191–195

    PubMed  CAS  Google Scholar 

  • Nowak DA, Topka H, Tisch S, Hariz M, Limousin P, Rothwell JC (2005) The beneficial effects of subthalamic nucleus stimulation on manipulative finger force control in Parkinson’s disease. Exp Neurol 193:427–436

    Article  PubMed  Google Scholar 

  • Poizner H, Feldman AG, Levin MF, Berkinblit MB, Hening WA, Patel A, Adamovich SV (2000) The timing of arm-trunk coordination is deficient and vision-dependent in Parkinson’s patients during reaching movements. Exp Brain Res 133:279–292

    Article  PubMed  CAS  Google Scholar 

  • Pullman SL, Watts RL, Juncos JL, Sanes JN (1990) Movement amplitude choice reaction time performance in Parkinson’s disease may be independent of dopaminergic status. J Neurol Neurosurg Psychiatry 53:279–283

    Article  PubMed  CAS  Google Scholar 

  • Raethjen J, Pohle S, Govindan RB, Morsnowski A, Wenzelburger R, Deuschl G (2005) Parkinsonian action tremor: interference with object manipulation and lacking levodopa response. Exp Neurol 194:151–160

    Article  PubMed  CAS  Google Scholar 

  • Rearick MP, Santello M (2002) Force synergies for multifingered grasping: effect of predictability in object center of mass and handedness. Exp Brain Res 144:38–49

    Article  PubMed  Google Scholar 

  • Rearick MP, Stelmach GE, Leis B, Santello M (2002) Coordination and control of forces during multifingered grasping in Parkinson’s disease. Exp Neurol 177:428

    Article  PubMed  Google Scholar 

  • Reilmann R, Gordon AM, Henningsen H (2001) Initiation and development of fingertip forces during whole-hand grasping. Exp Brain Res 140:443–452

    Article  PubMed  CAS  Google Scholar 

  • Salimi I, Hollender I, Frazier W, Gordon AM (2000) Specificity of internal representations underlying grasping. J Neurophysiol 84:2390–2397

    PubMed  CAS  Google Scholar 

  • Salimi I, Frazier W, Reilmann R, Gordon AM (2003) Selective use of visual information signaling objects’ center of mass for anticipatory control of manipulative fingertip forces. Exp Brain Res 150:9–18

    PubMed  Google Scholar 

  • Santello M, Soechting JF (2000) Force synergies for multifingered grasping. Exp Brain Res 133:457–467

    Article  PubMed  CAS  Google Scholar 

  • Santello M, Flanders M, Soechting JF (1998) Postural hand synergies for tool use. J Neurosci 18:10105–10115

    PubMed  CAS  Google Scholar 

  • Santello M, Muratori L, Gordon AM (2004) Control of multidigit grasping in Parkinson’s disease: effect of object property predictability. Exp Neurol 187:517

    Article  PubMed  Google Scholar 

  • Schettino LF, Rajaraman V, Jack D, Adamovich SV, Sage J, Poizner H (2003) Deficits in the evolution of hand preshaping in Parkinson’s disease. Neuropsychologia 42:82–94

    Article  Google Scholar 

  • Schettino LF, Adamovich SV, Hening W, Tunik E, Sage J, Poizner H (2006) Hand preshaping in Parkinson’s disease: effects of visual feedback and medication state. Exp Brain Res 168:186

    Article  PubMed  Google Scholar 

  • Sheridan MR, Flowers KA, Hurrell J (1987) Programming and execution of movement in Parkinson’s disease. Brain 110(Pt 5):1247–1271

    Article  PubMed  Google Scholar 

  • Shim JK, Latash ML, Zatsiorsky VM (2005) Prehension synergies in three dimensions. J Neurophysiol 93:766–776

    Article  PubMed  Google Scholar 

  • Stelmach GE, Worringham CJ, Strand EA (1986) Movement preparation in Parkinson’s disease. The use of advance information Brain 109(Pt 6):1179–1194

    Article  PubMed  Google Scholar 

  • Tresilian JR, Stelmach GE, Adler CH (1997) Stability of reach-to-grasp movement patterns in Parkinson’s disease. Brain 120(Pt 11):2093–2111

    Article  PubMed  Google Scholar 

  • Vaillancourt DE, Slifkin AB, Newell KM (2002) Inter-digit individuation and force variability in the precision grip of young, elderly, and Parkinson’s disease participants. Motor Control 6:113–128

    PubMed  Google Scholar 

  • Wenzelburger R, Zhang BR, Pohle S, Klebe S, Lorenz D, Herzog J, Wilms H, Deuschl G, Krack P (2002) Force overflow and levodopa-induced dyskinesias in Parkinson’s disease. Brain 125:871–879

    Article  PubMed  Google Scholar 

  • Zatsiorsky VM, Gregory RW, Latash ML (2002) Force and torque production in static multifinger prehension: biomechanics and control. I. Biomechanics. Biol Cybern 87:50–57

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. John F. Soechting for use of the grip apparatus, Dr. Matthew P. Rearick for helping in writing custom analysis software, Travis Lambert and Geraldine Dapul for helping with data processing, Lucien Coté, MD for assistance with subject recruitment and Dr. Arend Van Gemmert for helpful comments. Part of this work was supported by NSF Collaborative Research Grant BCS-0519152.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Santello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muratori, L.M., McIsaac, T.L., Gordon, A.M. et al. Impaired anticipatory control of force sharing patterns during whole-hand grasping in Parkinson’s disease. Exp Brain Res 185, 41–52 (2008). https://doi.org/10.1007/s00221-007-1129-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-1129-3

Keywords

Navigation