Skip to main content
Log in

ACL reconstruction using a quadruple semitendinosus graft with cortical fixations gives suitable isokinetic and clinical outcomes after 2 years

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The objective of this single-center randomized single-blinded trial was to assess the hypothesis that anterior cruciate ligament reconstruction (ACLR) using a four-strand semitendinosus (ST) graft with adjustable femoral and tibial cortical fixation produced good outcomes compared to an ST/gracilis (ST/G) graft with femoral pin transfixation and tibial bioscrew fixation. Follow-up was 2 years.

Methods

Patients older than 16 years who underwent primary isolated ACLR included for 1 year until August 2017 were eligible. The primary outcome measures were the subjective International Knee Documentation Committee (IKDC) score, isokinetic muscle strength recovery, and return to work within 2 years. The study was approved by the ethics committee.

Results

Of 66 eligible patients, 60 completed the study and were included, 33 in the 4ST group and 27 in the ST/G group. Mean age was 30.5 ± 8.9 years in the 4ST group and 30.3 ± 8.5 in the ST/G group (n.s.). No significant between-group differences were found for mean postoperative subjective IKDC (4ST group, 80.2 ± 12.5; ST/G group, 83.6 ± 13.6; n.s.), side-to-side percentage deficits in isokinetic hamstring strength (at 60°/s: ST group, 17% ± 16%; ST/G group, 14% ± 11%; n.s.) or quadriceps strength (at 60°/s: ST group, 14% ± 12%; ST/G group, 19% ± 17%; n.s.), return to work, pain during physical activities, side-to-side differential laxity, balance, loss of flexion/extension, or surgical complications.

Conclusion

This trial demonstrates that functional outcomes after 4ST for ACLR with cortical fixations could be as good, although not better, than those obtained using ST/G. The 4ST technique spares the gracilis tendon, which thus preserves the medial sided muscle and thereby could improve function and limit donor-side morbidity.

Level of evidence

Level I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACL:

Anterior cruciate ligament

ACLR:

Anterior cruciate ligament reconstruction

ICRS:

International cartilage repair society

IKDC:

International knee documentation committee

LFS:

Length-function–surface area

Nm:

Newton meter

ROM:

Range of motion

ST:

Semitendinosus

ST/G:

Semitendinosus/gracilis

References

  1. Ardern CL, Webster KE (2009) Knee flexor strength recovery following hamstring tendon harvest for anterior cruciate ligament reconstruction: a systematic review. Orthop Rev 1:e12

    Google Scholar 

  2. Barber-Westin SD, Noyes FR (2011) Factors used to determine return to unrestricted sports activities after anterior cruciate ligament reconstruction. Arthroscopy 27:1697–1705

    PubMed  Google Scholar 

  3. Barenius B, Nordlander M, Ponzer S, Tidermark J, Eriksson K (2010) Quality of life and clinical outcome after anterior cruciate ligament reconstruction using patellar tendon graft or quadrupled semitendinosus graft: an 8-year follow-up of a randomized controlled trial. Am J Sports Med 38:1533–1541

    PubMed  Google Scholar 

  4. Barenius B, Webster WK, McClelland J, Feller J (2013) Hamstring tendon anterior cruciate ligament reconstruction: does gracilis tendon harvest matter? Int Orthop 37:207–212

    PubMed  Google Scholar 

  5. Barrow AE, Pilia M, Guda T, Kadrmas WR, Burns TC (2014) Femoral suspension devices for anterior cruciate ligament reconstruction: do adjustable loops lengthen? Am J Sports Med 42:343–349

    PubMed  Google Scholar 

  6. Basson B, Philippot R, Neri T, Meucci JF, Boyer B, Farizon F (2016) The effect of femoral tunnel widening on one-year clinical outcome after anterior cruciate ligament reconstruction using ZipLoop® technology for fixation in the cortical bone of the femur. Knee 23:233–236

    PubMed  Google Scholar 

  7. Boyle MJ, Vovos TJ, Walker CG, Stabile KJ, Roth JM, Garrett WE (2015) Does adjustable-loop femoral cortical suspension loosen after anterior cruciate ligament reconstruction? A retrospective comparative study. Knee 22:304–308

    PubMed  Google Scholar 

  8. Bressy G, Brun V, Ferrier A, Dujardin D, Oubaya N, Morel N, Fontanin N, Ohl X (2016) Lack of stability at more than 12 months of follow-up after anterior cruciate ligament reconstruction using all-inside quadruple-stranded semitendinosus graft with adjustable cortical button fixation in both femoral and tibial sides. Orthop Traumatol Surg Res 102:867–872

    CAS  PubMed  Google Scholar 

  9. Browning WM, Kluczynski MA, Curatolo C, Marzo JM (2017) Suspensory versus aperture fixation of a quadrupled hamstring tendon autograft in anterior cruciate ligament reconstruction: a meta-analysis. Am J Sports Med 45:2418–2427

    PubMed  Google Scholar 

  10. Buchner M, Schmeer T, Schmitt H (2007) Anterior cruciate ligament reconstruction with quadrupled semitendinosus tendon—minimum 6 year clinical and radiological follow-up. Knee 14:321–327

    PubMed  Google Scholar 

  11. Cerulli G, Zamarra G, Vercillo F, Pelosi F (2011) ACL reconstruction with “the original all-inside technique”. Knee Surg Sports Traumatol Arthrosc 19:829–831

    PubMed  Google Scholar 

  12. Cooley VJ, Deffner KT, Rosenberg TD (2001) Quadrupled semitendinosus anterior cruciate ligament reconstruction: 5-year results in patients without meniscus loss. Arthroscopy 17:795–800

    CAS  PubMed  Google Scholar 

  13. Daneshjoo A, Rahnama N, Mokhtar AH, Yusof A (2013) Bilateral and unilateral asymmetries of isokinetic strength and flexibility in male young professional soccer players. J Hum Kinet 36:45–53

    PubMed  PubMed Central  Google Scholar 

  14. Dauty M, Tortelier L, Huguet D, Potiron-Josse M, Dubois C (2006) Consequences of pain on isokinetic performance after anterior cruciate ligament reconstruction using a semitendinosus and gracilis autograft. Rev Chir Orthopédique Réparatrice Appar Mot 92:455–463

    CAS  Google Scholar 

  15. Dejour D, Ntagiopoulos PG, Saggin PR, Panisset J-C (2013) The diagnostic value of clinical tests, magnetic resonance imaging, and instrumented laxity in the differentiation of complete versus partial anterior cruciate ligament tears. Arthroscopy 29:491–499

    PubMed  Google Scholar 

  16. Drouin JM, Valovich-mcLeod TC, Shultz SJ, Gansneder BM, Perrin DH (2004) Reliability and validity of the Biodex system 3 pro isokinetic dynamometer velocity, torque and position measurements. Eur J Appl Physiol 91:22–29

    PubMed  Google Scholar 

  17. Dudhniwala AG, Rath N, Forster MC (2012) Lateral meniscal tear resulting from the femoral cross-pin used for hamstring graft fixation in anterior cruciate ligament reconstruction. Knee 19:951–952

    CAS  PubMed  Google Scholar 

  18. Eguchi A, Ochi M, Adachi N, Deie M, Nakamae A, Usman MA (2014) Mechanical properties of suspensory fixation devices for anterior cruciate ligament reconstruction: comparison of the fixed-length loop device versus the adjustable-length loop device. Knee 21:743–748

    PubMed  Google Scholar 

  19. Handl M, Drzík M, Cerulli G, Povýsil C, Chlpík J, Varga F, Amler E, Trc T (2007) Reconstruction of the anterior cruciate ligament: dynamic strain evaluation of the graft. Knee Surg Sports Traumatol Arthrosc 15:233–241

    PubMed  Google Scholar 

  20. Harilainen A, Sandelin J (2009) A prospective comparison of 3 hamstring ACL fixation devices–Rigidfix, BioScrew, and Intrafix–randomized into 4 groups with 2 years of follow-up. Am J Sports Med 37:699–706

    PubMed  Google Scholar 

  21. Hirjaková Z, Šingliarová H, Bzdúšková D, Kimijanová J, Bučková K, Valkovič P, Hlavačka F (2016) Postural stability and responses to vibrations in patients after anterior cruciate ligament surgical reconstruction. Physiol Res 65:S409–S416

    PubMed  Google Scholar 

  22. Howells BE, Ardern CL, Webster KE (2011) Is postural control restored following anterior cruciate ligament reconstruction? A systematic review. Knee Surg Sports Traumatol Arthrosc 19:1168–1177

    PubMed  Google Scholar 

  23. Jenny J, Besse J, Salle de Chou E, Diesinger Y (2015) Devenir à long terme des ligamentoplasties du ligament croisé antérieur. In: Potel JF Hulet C (eds) Arthrosc Issy-les-Moulineaux, France: Elsevier Masson, pp 943–957

  24. Kamelger FS, Onder U, Schmoelz W, Tecklenburg K, Arora R, Fink C (2009) Suspensory fixation of grafts in anterior cruciate ligament reconstruction: a biomechanical comparison of 3 implants. Arthroscopy 25:767–776

    PubMed  Google Scholar 

  25. Kim S-G, Kurosawa H, Sakuraba K, Ikeda H, Takazawa S (2006) The effect of initial graft tension on postoperative clinical outcome in anterior cruciate ligament reconstruction with semitendinosus tendon. Arch Orthop Trauma Surg 126:260–264

    PubMed  Google Scholar 

  26. Kleweno CP, Jacir AM, Gardner TR, Ahmad CS, Levine WN (2009) Biomechanical evaluation of anterior cruciate ligament femoral fixation techniques. Am J Sports Med 37:339–345

    PubMed  Google Scholar 

  27. Kouloumentas P, Kavroudakis E, Charalampidis E, Kavroudakis D, Triantafyllopoulos GK (2019) Superior knee flexor strength at 2 years with all-inside short-graft anterior cruciate ligament reconstruction vs a conventional hamstring technique. Knee Surg Sports Traumatol Arthrosc 27:3592–3598

    PubMed  Google Scholar 

  28. Kyung H-S, Lee H-J, Oh C-W, Hong H-P (2015) Comparison of results after anterior cruciate ligament reconstruction using a four-strand single semitendinosus or a semitendinosus and gracilis tendon. Knee Surg Sports Traumatol Arthrosc 23:3238–3243

    PubMed  Google Scholar 

  29. Lubowitz JH, Ahmad CS, Amhad CH, Anderson K (2011) All-inside anterior cruciate ligament graft-link technique: second-generation, no-incision anterior cruciate ligament reconstruction. Arthroscopy 27:717–727

    PubMed  Google Scholar 

  30. Mayr R, Heinrichs CH, Eichinger M, Coppola C, Schmoelz W, Attal R (2015) Biomechanical comparison of 2 anterior cruciate ligament graft preparation techniques for tibial fixation: adjustable-length loop cortical button or interference screw. Am J Sports Med 43:1380–1385

    PubMed  Google Scholar 

  31. Mayr R, Heinrichs CH, Eichinger M, Smekal V, Schmoelz W, Attal R (2016) Preparation techniques for all-inside ACL cortical button grafts: a biomechanical study. Knee Surg Sports Traumatol Arthrosc 24:2983–2989

    PubMed  Google Scholar 

  32. Middleton KK, Hamilton T, Irrgang JJ, Karlsson J, Harner CD, Fu FH (2014) Anatomic anterior cruciate ligament (ACL) reconstruction: a global perspective. Part 1. Knee Surg Sports Traumatol Arthrosc 22:1467–1482

    CAS  PubMed  Google Scholar 

  33. Mithoefer K, Saris DBF, Farr J, Kon E, Zaslav K, Cole BJ, Ranstam J, Yao J, Shive M, Levine D, Dalemans W, Brittberg M (2011) Guidelines for the design and conduct of clinical studies in knee articular cartilage repair: international cartilage repair society recommendations based on current scientific evidence and standards of clinical care. Cartilage 2:100–121

    PubMed  PubMed Central  Google Scholar 

  34. Noonan BC, Dines JS, Allen AA, Altchek DW, Bedi A (2016) Biomechanical evaluation of an adjustable loop suspensory anterior cruciate ligament reconstruction fixation device: the value of retensioning and knot tying. Arthroscopy 32:2050–2059

    PubMed  Google Scholar 

  35. Nordenvall R, Bahmanyar S, Adami J, Stenros C, Wredmark T, Felländer-Tsai L (2012) A population-based nationwide study of cruciate ligament injury in Sweden, 2001–2009: incidence, treatment, and sex differences. Am J Sports Med 40:1808–1813

    PubMed  Google Scholar 

  36. Olsson O, Isacsson A, Englund M, Frobell RB (2016) Epidemiology of intra- and peri-articular structural injuries in traumatic knee joint hemarthrosis—data from 1145 consecutive knees with subacute MRI. Osteoarthritis Cartilage 24:1890–1897

    CAS  PubMed  Google Scholar 

  37. Paine R, Lowe W (2012) Comparison of Kneelax and KT-1000 knee ligament arthrometers. J Knee Surg 25:151–154

    PubMed  Google Scholar 

  38. Palm H-G, Schlumpberger S, Riesner H-J, Friemert B, Lang P (2015) Influence of anterior cruciate reconstruction on postural stability: a pre- and postoperative comparison. Unfallchirurg 118:527–534

    PubMed  Google Scholar 

  39. Papastergiou SG, Koukoulias NE, Ziogas E, Dimitriadis T, Voulgaropoulos H (2009) Broken bioabsorbable femoral cross-pin as a cause of a chondral lesion after anterior cruciate ligament reconstruction. BMJ Case Rep. https://doi.org/10.1136/bcr.09.2008.0883

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pasquali M, Plante MJ, Monchik KO, Spenciner DB (2017) A comparison of three adjustable cortical button ACL fixation devices. Knee Surg Sports Traumatol Arthrosc 25:1613–1616

    PubMed  Google Scholar 

  41. Petre BM, Smith SD, Jansson KS, de Meijer P-P, Hackett TR, LaPrade RF, Wijdicks CA (2013) Femoral cortical suspension devices for soft tissue anterior cruciate ligament reconstruction: a comparative biomechanical study. Am J Sports Med 41:416–422

    PubMed  Google Scholar 

  42. Pinczewski LA, Lyman J, Salmon LJ, Russell VJ, Roe J, Linklater J (2007) A 10-year comparison of anterior cruciate ligament reconstructions with hamstring tendon and patellar tendon autograft: a controlled, prospective trial. Am J Sports Med 35:564–574

    PubMed  Google Scholar 

  43. Saccomanno MF, Shin JJ, Mascarenhas R, Haro M, Verma NN, Cole BJ, Bach BR (2014) Clinical and functional outcomes after anterior cruciate ligament reconstruction using cortical button fixation versus transfemoral suspensory fixation: a systematic review of randomized controlled trials. Arthrosc J Arthrosc Relat Surg 30:1491–1498

    Google Scholar 

  44. Sharma A, Flanigan DC, Randall K, Magnussen RA (2016) Does gracilis preservation matter in anterior cruciate ligament reconstruction? A systematic review. Arthrosc J Arthrosc Relat Surg 32:1165–1173

    Google Scholar 

  45. Smith MD, Bell DR (2013) Negative effects on postural control after anterior cruciate ligament reconstruction as measured by the balance error scoring system. J Sport Rehabil 22:224–228

    PubMed  Google Scholar 

  46. Sonnery-Cottet B, Rezende FC, Martins Neto A, Fayard JM, Thaunat M, Kader DF (2014) Arthroscopically confirmed femoral button deployment. Arthrosc Tech 3:e309–312

    PubMed  PubMed Central  Google Scholar 

  47. Streich NA, Reichenbacher S, Barié A, Buchner M, Schmitt H (2013) Long-term outcome of anterior cruciate ligament reconstruction with an autologous four-strand semitendinosus tendon autograft. Int Orthop 37:279–284

    PubMed  PubMed Central  Google Scholar 

  48. Tashiro T, Kurosawa H, Kawakami A, Hikita A, Fukui N (2003) Influence of medial hamstring tendon harvest on knee flexor strength after anterior cruciate ligament reconstruction. A detailed evaluation with comparison of single- and double-tendon harvest. Am J Sports Med 31:522–529

    PubMed  Google Scholar 

  49. Wroble RR, Van Ginkel LA, Grood ES, Noyes FR, Shaffer BL (1990) Repeatability of the KT-1000 arthrometer in a normal population. Am J Sports Med 18:396–399

    CAS  PubMed  Google Scholar 

  50. Yamazaki S, Yasuda K, Tomita F, Minami A, Tohyama H (2006) The effect of intraosseous graft length on tendon-bone healing in anterior cruciate ligament reconstruction using flexor tendon. Knee Surg Sports Traumatol Arthrosc 14:1086–1093

    PubMed  Google Scholar 

  51. Yasen SK, Borton ZM, Eyre-Brook AI, Palmer HC, Cotterill ST, Risebury MJ, Wilson AJ (2017) Clinical outcomes of anatomic, all-inside, anterior cruciate ligament (ACL) reconstruction. Knee 24:55–62

    PubMed  Google Scholar 

  52. Yosmaoglu HB, Baltaci G, Ozer H, Atay A (2011) Effects of additional gracilis tendon harvest on muscle torque, motor coordination, and knee laxity in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 19:1287–1292

    PubMed  Google Scholar 

  53. Zehir S, Zehir R (2014) Suspensory fixation versus novel transverse crosspin for femoral fixation in anterior cruciate ligament reconstruction. Arch Orthop Trauma Surg 134:1579–1585

    PubMed  Google Scholar 

Download references

Funding

No funding source.

Author information

Authors and Affiliations

Authors

Contributions

JR followed the patients in consultation, recorded the data, performed the statistical analysis with R commander ® and drafted the manuscript. AB and RG helped JR carry out the writing of the manuscript. FV participated in the design of the study, called the patients and examined them in consultation. LH followed the patients in their rehabilitation. FR, AB and FM conceived the study, participated in its design and coordination and helped to draft the manuscript. They also examined patients in consultation. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Julien Roger or Antoine Bertani.

Ethics declarations

Conflict of interest

No financial incentive or reimbursement was received for this study. Other authors declare no conflicts of interest.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

IRB approval

The “CPP ILE DE France I” approved the study (N°IRB IORG0008367), and it was registered “2017- juil. -14635 ND”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Permissions

Permission has been obtained for use of the copyrighted material from other sources, including the technical note of the laboratories on the Web.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roger, J., Bertani, A., Vigouroux, F. et al. ACL reconstruction using a quadruple semitendinosus graft with cortical fixations gives suitable isokinetic and clinical outcomes after 2 years. Knee Surg Sports Traumatol Arthrosc 28, 2468–2477 (2020). https://doi.org/10.1007/s00167-020-06121-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-020-06121-2

Keywords

Navigation