Skip to main content
Log in

Anatomy of proximal attachment, course, and innervation of hamstring muscles: a pictorial essay

  • HIP
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Hamstring injuries are very common in sports medicine. Knowing their anatomy, morphology, innervation, and function is important to provide a proper diagnosis, treatment as well as appropriate prevention strategies. In this pictorial essay, based on anatomical dissection, the detailed anatomy of muscle–tendon complex is reviewed, including their proximal attachment, muscle course, and innervation. To illustrate hamstrings’ role in the rotational control of the tibia, the essay also includes the analysis of their biomechanical function.

Level of evidence V (expert opinion based on laboratory study).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Abourezk MN, Ithurburn MP, McNally MP et al (2017) Hamstring Strength asymmetry at 3 years after anterior cruciate ligament reconstruction alters knee mechanics during gait and jogging. Am J Sport Med 45(1):97–105

    Article  Google Scholar 

  2. Adibatti M, V S (2014) Study on variant anatomy of sciatic nerve. J Clin Diagn Res 8(8):AC07–A9

    PubMed  PubMed Central  Google Scholar 

  3. Ahmad CS, Redler LH, Ciccotti MG et al (2013) Evaluation and management of hamstring injuries. Am J Sport Med 41(12):2933–2947

    Article  Google Scholar 

  4. Alonso JM, Edouard P, Fischetto G et al (2012) Determination of future prevention strategies in elite track and field: analysis of Daegu 2011 IAAF Championships injuries and illnesses surveillance. Br J Sports Med 46(7):505–514

    Article  PubMed  PubMed Central  Google Scholar 

  5. An XC, Lee JH, Im S et al (2010) Anatomic localization of motor entry points and intramuscular nerve endings in the hamstring muscles. Surg Radiol Anat 32(6):529–537

    Article  CAS  PubMed  Google Scholar 

  6. Askling CM, Tengvar M, Saartok T et al (2007) Acute first-time hamstring strains during high-speed running: a longitudinal study including clinical and magnetic resonance imaging findings. Am J Sports Med 35:197–206

    Article  PubMed  Google Scholar 

  7. Askling CM, Tengvar M, Saartok T et al (2007) Acute first-time hamstring strains during slow-speed stretching: clinical, magnetic resonance imaging, and recovery characteristics. Am J Sports Med 35:10:1716–1724

    Article  PubMed  Google Scholar 

  8. Askling CM, Tengvar M, Saartok T et al (2008) Proximal hamstring strains of stretching type in different sports: injury situations, clinical and magnetic resonance imaging characteristics, and return to sport. Am J Sports Med 36(9):1799–1804

    Article  PubMed  Google Scholar 

  9. Azmi NL, Ding Z, Xu R et al (2018) Activation of biceps femoris long head reduces tibiofemoral anterior shear force and tibial internal rotation torque in healthy subjects. PLoS One 13(1):e0190672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Battermann N, Appell HJ et al (2011) An anatomical study of the proximal hamstring muscle complex to elucidate muscle strains in this region. Int J Sports Med 32(3):211–215

    Article  CAS  PubMed  Google Scholar 

  11. Bejui J, Walch G, Gonon GP et al (1984) Anatomical and functional study on the musculus semimembranosus. Anat Clin 6(3):215–223

    Article  CAS  PubMed  Google Scholar 

  12. Bierry G, Simeone FJ, Borg-Stein JP et al (2014) Sacrotuberous ligament: relationship to normal, torn, and retracted hamstring tendons on MR images. Radiology 271(1):162–171

    Article  PubMed  Google Scholar 

  13. Biscarini A, Botti FM, Pettorossi VE (2013) Selective contribution of each hamstring muscle to anterior cruciate ligament protection and tibiofemoral joint stability in leg-extension exercise: a simulation study. Eur J Appl Physiol 113(9):2263–2273

    Article  PubMed  Google Scholar 

  14. Bochenek A, Reicher M (2010) Anatomia człowieka. Tom I. Wydawnictwo lekarskie PZWL, Warszawa

    Google Scholar 

  15. Bogacka U, Dziedzic D, Komarnitki I et al (2017) Anatomy of the longperoneal muscle of the leg. Folia Morphol 76(2):284–288

    Article  CAS  Google Scholar 

  16. Brandser EA, el-Khoury GY, Kathol MH et al (1995) Hamstring injuries: radiographic, conventional tomographic, CT, and MR imaging characteristics. Radiology 197(1):257–262

    Article  CAS  PubMed  Google Scholar 

  17. Burkett LN (1975) Investigation into hamstring strains: the case of the hybrid muscle. J Sports Med 3(5):228–231

    Article  CAS  PubMed  Google Scholar 

  18. Chan O, Del Buono A, Best TM et al (2012) Acute muscle strain injuries: a proposed new classification system. Knee Surg Sports Traumatol Arthrosc 20(11):2356–2362

    Article  PubMed  Google Scholar 

  19. Chumanov ES, Heiderscheit BC, Thelen DG (2007) The effect of speed and influence of individual muscles on hamstring mechanics during the swing phase of sprinting. J Biomech 40(16):3555–3562

    Article  PubMed  Google Scholar 

  20. Cohen SB, Towers JD, Zoga A et al (2011) Hamstring injuries in professional football players: magnetic resonance imaging correlation with return to play. Sports Health 3(5):423–430

    Article  PubMed  PubMed Central  Google Scholar 

  21. Connell DA, Schneider-Kolsky ME, Hoving JL et al (2004) Longitudinal study comparing sonographic and MRI assessments of acute and healing hamstring injuries. AJR Am J Roentgenol 183(4):975–984

    Article  PubMed  Google Scholar 

  22. Dadebo B, White J, George KP (2004) A survey of flexibility training protocols and hamstring strains in professional football clubs in England. Br J Sports Med 38(4):388–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. De Smet AA, Blankenbaker DG, Alsheik NH et al (2012))MRI appearance of the proximal hamstring tendons in patients with and without symptomatic proximal hamstring tendinopathy. AJR Am J Roentgenol 198(2):418–422

    Article  PubMed  Google Scholar 

  24. Dierckman BD, Guanche CA (2012) Endoscopic proximal hamstring repair and ischial bursectomy. Arthrosc Tech 1(2):e201–e207

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dolman B, Verrall G, Reid I (2014) Physical principles demonstrate that the biceps femoris muscle relative to the other hamstring muscles exerts the most force: implications for hamstring muscle strain injuries. Muscles Ligaments Tendons J 4(3):371–377

    PubMed  PubMed Central  Google Scholar 

  26. Dziedzic D, Bogacka U, Ciszek B (2014) Anatomy of sartoriusmuscle. Folia Morphol 73(3):359–362

    Article  CAS  Google Scholar 

  27. Dziedzic D, Bogacka U, Komarnitki I et al (2018) Anatomy and morphometry of the distal gracilis muscle tendon in adults and foetuses. Folia Morphol 77(1):138–143

    Article  CAS  Google Scholar 

  28. Ekstrand J, Hägglund M, Waldén M (2011) Injury incidence and injury patterns in professional football: the UEFA injury study. Br J Sports Med 45(7):553–558

    Article  CAS  Google Scholar 

  29. Ekstrand J, Hägglund M, Waldén M (2011) Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med 39(6):1226–1232

    Article  Google Scholar 

  30. Ekstrand J, Lee JC, Healy JC (2016) MRI findings and return to play in football: a prospective analysis of 255 hamstring injuries in the UEFA Elite Club Injury Study. Br J Sports Med 50(12):738–743

    Article  PubMed  Google Scholar 

  31. Ekstrand J, Hägglund M, Waldén M (2016) Hamstring injuries have increased by 4% annually in men’s professional football, since 2001: a 13-year longitudinal analysis of the UEFA Elite Club injury study. Br J Sports Med 50(12):731–737

    Article  Google Scholar 

  32. El-Ashker S, Carson BP, Ayala F et al (2017) Sex-related differences in joint-angle-specific functional hamstring-to-quadriceps strength ratios. Knee Surg Sports Traumatol Arthrosc 25(3):949–957

    Article  PubMed  Google Scholar 

  33. Elliott MC, Zarins B, Powell JW et al (2011) Hamstring muscle strains in professional football players: a 10-year review. Am J Sports Med 39(4):843–850

    Article  PubMed  Google Scholar 

  34. Ernlund L, Vieira LA (2017) Hamstring injuries: update article. Rev Bras Ortop 52(4):373–382

    Article  PubMed  PubMed Central  Google Scholar 

  35. Feucht MJ, Plath JE, Seppel G et al (2015) Gross anatomical and dimensional characteristics of the proximal hamstring origin. Knee Surg Sports Traumatol Arthrosc 23(9):2576–2582

    Article  PubMed  Google Scholar 

  36. Frigo C, Pavan EE, Brunner R (2010) A dynamic model of quadriceps and hamstrings function. Gait Posture 31(1):100–103

    Article  CAS  PubMed  Google Scholar 

  37. Garrett WE Jr, Rich FR, Nikolaou PK et al (1989) Computed tomography of hamstring muscle strains. Med Sci Sports Exerc 21(5):506–514

    Article  PubMed  Google Scholar 

  38. Guanche CA (2015) Hamstring injuries. J Hip Preserv Surg 2(2):116–122

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hallén A, Ekstrand J (2014) Return to play following muscle injuries in professional footballers. J Sports Sci 32(13):1229–1236

    Article  PubMed  Google Scholar 

  40. Hammer N, Steinke H, Slowik V et al (2009) The sacrotuberous and the sacrospinous ligament—a virtual reconstruction. Ann Anat 191(4):417–425

    Article  CAS  PubMed  Google Scholar 

  41. Kellis E, Galanis N, Natsis K et al (2012) In vivo and in vitro examination of the tendinous inscription of the human semitendinosus muscle. Cells Tissues Organs 195(4):365–376

    Article  PubMed  Google Scholar 

  42. Kellis E, Galanis N, Kapetanos G et al (2012) Architectural differences between the hamstring muscles. J Electromyogr Kinesiol 22(4):520–526

    Article  PubMed  Google Scholar 

  43. Kellis E, Galanis N, Natsis K et (2010) Muscle architecture variations along the human semitendinosus and biceps femoris (long head) length. J Electromyogr Kinesiol 20(6):1237–1243

    Article  PubMed  Google Scholar 

  44. Konrath JM, Vertullo CJ, Kennedy BA et al (2016) Morphologic characteristics and strength of the hamstring muscles remain altered at 2 years after use of a hamstring tendon graft in anterior cruciate ligament reconstruction. Am J Sport Med 44(10):2589–2598

    Article  Google Scholar 

  45. Koulouris G, Connell D (2003) Evaluation of the hamstring muscle complex following acute injury. Skelet Radiol 32(10):582–589

    Article  Google Scholar 

  46. Koulouris G, Connell D (2005) Hamstring muscle complex: an imaging review. Radiographics 25(3):571–586

    Article  PubMed  Google Scholar 

  47. Kouzaki K, Nakazato K, Mizuno M et al (2017) Sciatic nerve conductivity is impaired by hamstring strain injuries. Int J Sports Med 38(11):803–808

    Article  PubMed  Google Scholar 

  48. Kremen TJ, Polakof LS, Rajaee SS et al (2018) The effect of hamstring tendon autograft harvest on the restoration of knee stability in the setting of concurrent anterior cruciate ligament and medial collateral ligament injuries. Am J Sport Med 46(1):163–170

    Article  Google Scholar 

  49. Kumazaki T, Ehara Y, Sakai T (2012) Anatomy and physiology of hamstring injury. Int J Sports Med 33(12):950–954

    Article  CAS  PubMed  Google Scholar 

  50. Kuske B, Hamilton DF, Pattle SB et al (2016) Patterns of hamstring muscle tears in the general population: a systematic review. PLoS One 11(5):e0152855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee TC, O’Driscoll KJ, McGettigan P et al (1988) The site of the tendinous interruption in semitendinosus in man. J Anat 157:229–231

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lempainen L, Banke IJ, Johansson K et al (2015) Clinical principles in the management of hamstring injuries. Knee Surg Sports Traumatol Arthrosc 23(8):2449–2456

    Article  PubMed  Google Scholar 

  53. Lempainen L, Sarimo J, Mattila K et al (2007) Distal tears of the hamstring muscles: review of the literature and our results of surgical treatment. Br J Sports Med 41(2):80–83

    Article  PubMed  Google Scholar 

  54. Lempainen L, Sarimo J, Orava S (2007) Recurrent and chronic complete ruptures of the proximal origin of the hamstring muscles repaired with fascia lata autograft augmentation. Arthroscopy 23(4):441.e1–441.e5

    Article  Google Scholar 

  55. Li G, Rudy TW, Sakane M et al (1999) The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. J Biomech 32(4):395–400

    Article  CAS  PubMed  Google Scholar 

  56. Marshall JL, Girgis FG, Zelko RR (1972) The biceps femoris tendon and its functional significance. J Bone Jt Surg Am 54(7):1444–1450

    Article  CAS  Google Scholar 

  57. Martin BF (1968) The origins of the hamstring muscles. J Anat 102(Pt 2):345–352

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Miller SL, Gill J, Webb GR (2007) The proximal origin of the hamstrings and surrounding anatomy encountered during repair. A cadaveric study. J Bone Jt Surg Am 89(1):44–48

    Article  Google Scholar 

  59. Mueller-Wohlfahrt HW, Haensel L, Mithoefer K et al (2013) Terminology and classification of muscle injuries in sport: the Munich consensus statement. Br J Sports Med 47(6):342–350

    Article  PubMed  Google Scholar 

  60. Neuschwander TB, Benke MT, Gerhardt MB (2015) Anatomic description of the origin of the proximal hamstring. Arthroscopy 31(8):1518–1521

    Article  PubMed  Google Scholar 

  61. Philippon MJ, Ferro FP, Campbell KJ et al (2015) A qualitative and quantitative analysis of the attachment sites of the proximal hamstrings. Knee Surg Sports Traumatol Arthrosc 23(9):2554–2561

    Article  PubMed  Google Scholar 

  62. Pollock N, James SLJ, Lee JC et al (2014) British athletics muscle injury classification: a new grading system. Br J Sports Med 48(18):1347–1351

    Article  PubMed  Google Scholar 

  63. Pollock N, Patel A, Chakraverty J et al (2016) Time to return to full training is delayed and recurrence rate is higher in intratendinous (‘c’) acute hamstring injury in elite track and field athletes: clinical application of the British Athletics Muscle Injury Classification. Br J Sports Med 50(5):305–310

    Article  PubMed  Google Scholar 

  64. Rab M, Mader N, Kamolz LP et al (1997) Basic anatomical investigation of semitendinosus and the long head of biceps femoris muscle for their possible use in electrically stimulated neosphincter formation. Surg Radiol Anat 19(5):287–291

    Article  CAS  PubMed  Google Scholar 

  65. Rha DW, Yi KH, Park ES et al (2016) Intramuscular nerve distribution of the hamstring muscles: application to treating spasticity. Clin Anat 29(6):746–751

    Article  PubMed  Google Scholar 

  66. Ripani M, Continenza MA, Cacchio A et al (2006) The ischiatic region: normal and MRI anatomy. J Sports Med Phys Fit 46(3):468–475

    CAS  Google Scholar 

  67. Sasaki S, Koga H, Krosshaug T et al (2018) Kinematic analysis of pressing situations in female collegiate football games: new insight into anterior cruciate ligament injury causation. Scand J Med Sci Sports 28(3):1263–1271

    Article  CAS  PubMed  Google Scholar 

  68. Sato K, Nimura A, Yamaguchi K et al (2012) Anatomical study of the proximal origin of hamstring muscles. J Orthop Sci 17(5):614–618

    Article  PubMed  Google Scholar 

  69. Schache AG, Dorn TW, Blanch PD et al (2012) Mechanics of the human hamstring muscles during sprinting. Med Sci Sports Exerc 44(4):647–658

    Article  PubMed  Google Scholar 

  70. Schuermans J, van Tiggelen D, Danneels L et al (2014) Biceps femoris and semitendinosus–teammates or competitors? New insights into hamstring injury mechanisms in male football players: a muscle functional MRI study. Br J Sports Med 48(22):1599–1606

    Article  PubMed  PubMed Central  Google Scholar 

  71. Seidel PM, Seidel GK, Gans BM (1996) Precise localization of the motor nerve branches to the hamstring muscles: an aid to the conduct of neurolytic procedures. Arch Phys Med Rehabil 77(11):1157–1160

    Article  CAS  PubMed  Google Scholar 

  72. Slavotinek JP, Verrall GM, Fon GT (2002) Hamstring injury in athletes: using MR imaging measurements to compare extent of muscle injury with amount of time lost from competition. AJR Am J Roentgenol 179(6):1621–1628

    Article  PubMed  Google Scholar 

  73. Suijkerbuijk MAM, Reijman M, Lodewijks S et al (2015) Hamstring tendon regeneration after harvesting: a systematic review. Am J Sport Med 43(10):2591–2598

    Article  Google Scholar 

  74. Suijkerbuijk MAM, Reijman M, Oei EHG et al (2018) Predictive factors of hamstring tendon regeneration and functional recovery after harvesting: a prospective follow-up study. Am J Sport Med 46(5):1166–1174

    Article  Google Scholar 

  75. Sutton G (1984) Hamstrung by hamstring strains: a review of the literature. J Orthop Sports Phys Ther 5(4):184–195

    Article  CAS  PubMed  Google Scholar 

  76. Terry GC, LaPrade RF (1996) The biceps femoris muscle complex at the knee. Its anatomy and injury patterns associated with acute anterolateral-anteromedial rotatory instability. Am J Sports Med 24(1):2–8

    Article  CAS  PubMed  Google Scholar 

  77. Terry GC, LaPrade RF (1996) The posterolateral aspect of the knee. Anatomy and surgical approach. Am J Sports Med 24(6):732–739

    Article  CAS  PubMed  Google Scholar 

  78. Tubbs RS, Caycedo FJ, Oakes WJ (2006) Descriptive anatomy of the insertion of the biceps femoris muscle. Clin Anat 19(6):517–521

    Article  PubMed  Google Scholar 

  79. Valle X, Alentorn-Geli E, Tol JL et al (2017) Muscle injuries in sports: a new evidence-informed and expert consensus-based classification with clinical application. Sports Med 47(7):1241–1253

    Article  PubMed  Google Scholar 

  80. van Campenhout A, Molenaers G (2011) Localization of the motor endplate zone in human skeletal muscles of the lower limb: anatomical guidelines for injection with botulinum toxin. Dev Med Child Neurol 53(2):108–119

    Article  PubMed  Google Scholar 

  81. van der Horst N, Smits DW, Petersen J et al (2015) The preventive effect of the nordic hamstring exercise on hamstring injuries in amateur soccer players: a randomized controlled trial. Am J Sports Med 43(6):1316–1323

    Article  PubMed  Google Scholar 

  82. van der Made AD, Wieldraaijer T, Kerkhoffs GM et al (2015) The hamstring muscle complex. Knee Surg Sports Traumatol Arthrosc 23(7):2115–2122

    Article  PubMed  Google Scholar 

  83. van Wingerden JP, Vleeming A, Snijders CJ et al (1993) A functional-anatomical approach to the spine-pelvis mechanism: interaction between the biceps femoris muscle and the sacrotuberous ligament. Eur Spine J 2(3):140–144

    Article  PubMed  Google Scholar 

  84. Wangensteen A, Tol JL, Roemer FW et al (2017) Intra- and interrater reliability of three different MRI grading and classification systems after acute hamstring injuries. Eur J Radiol 89:182–190

    Article  PubMed  Google Scholar 

  85. Wangensteen A, Tol JL, Witvrouw E et al (2016) Hamstring reinjuries occur at the same location and early after return to sport: a descriptive study of MRI-confirmed reinjuries. Am J Sports Med 44(8):2112–2121

    Article  PubMed  Google Scholar 

  86. Woodley SJ, Mercer SR (2005) Hamstring muscles: architecture and innervation. Cells Tissues Organs 179(3):125–141

    Article  PubMed  Google Scholar 

  87. Woods C (2004) The football association medical research programme: an audit of injuries in professional football -analysis of hamstring injuries. Br J Sports Med 38(1):36–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wu R, Delahunt E, Ditroilo M et al (2017) Effect of knee joint angle and contraction intensity on hamstrings coactivation. Med Sci Sports Exerc 49(8):1668–1676

    Article  PubMed  Google Scholar 

  89. Zebis MK, Bencke J, Andersen LL et al (2011) Acute fatigue impairs neuromuscular activity of anterior cruciate ligament-agonist muscles in female team handball players. Scand J Med Sci Sports 21(6):833–840

    Article  CAS  PubMed  Google Scholar 

  90. Zebis MK, Bencke J, Andersen LL et al (2008) The effects of neuromuscular training on knee joint motor control during sidecutting in female elite soccer and handball players. Clin J Sport Med 18(4):329–337

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Maciej Śmiarowski (https://www.artlaboratory.eu) who provided photographic documentation. Dr. Robert Śmigielski wishes to dedicate the article to his mentor—Dr. Bernhard Segesser. The project was co-funded by the Luxembourg Institute of Research in Orthopaedics, Sports Medicine and Science (LIROMS).

Funding

The project was co-funded by the Luxembourg Institute of Research in Orthopaedics, Sports Medicine and Science (LIROMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karolina Stępień.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

For this type of study formal consent is not required.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (M4V 57975 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stępień, K., Śmigielski, R., Mouton, C. et al. Anatomy of proximal attachment, course, and innervation of hamstring muscles: a pictorial essay. Knee Surg Sports Traumatol Arthrosc 27, 673–684 (2019). https://doi.org/10.1007/s00167-018-5265-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-018-5265-z

Keywords

Navigation