Skip to main content
Log in

In vivo length change patterns of the medial and lateral collateral ligaments along the flexion path of the knee

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The knowledge of the function of the collateral ligaments—i.e., superficial medial collateral ligament (sMCL), deep medial collateral ligament (dMCL) and lateral collateral ligament (LCL)—in the entire range of knee flexion is important for soft tissue balance during total knee arthroplasty (TKA). The objective of this study was to investigate the length changes of different portions (anterior, middle and posterior) of the sMCL, dMCL and LCL during in vivo weightbearing flexion from full extension to maximal knee flexion.

Methods

Using a dual fluoroscopic imaging system, eight healthy knees were imaged while performing a lunge from full extension to maximal flexion. The length changes of each portion of the collateral ligaments were measured along the flexion path of the knee.

Results

All anterior portions of the collateral ligaments were shown to have increasing length with flexion except that of the sMCL, which showed a reduction in length at high flexion. The middle portions showed minimal change in lengths except that of the sMCL, which showed a consistent reduction in length with flexion. All posterior portions showed reduction in lengths with flexion.

Conclusions

These data indicated that every portion of the ligaments may play important roles in knee stability at different knee flexion range. The soft tissue releasing during TKA may need to consider the function of the ligament portions along the entire flexion path including maximum flexion.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amiri S, Cooke TD, Wyss UP (2011) A multiple-bundle model to characterize the mechanical behavior of the cruciate ligaments. Knee 18:34–41

    Article  PubMed  Google Scholar 

  2. Bergamini E, Pillet H, Hausselle J, Thoreux P, Guerard S, Camomilla V, Cappozzo A, Skalli W (2011) Tibio-femoral joint constraints for bone pose estimation during movement using multi-body optimization. Gait Posture 33:706–711

    Article  CAS  PubMed  Google Scholar 

  3. Blankevoort L, Huiskes R (1991) Ligament-bone interaction in a three-dimensional model of the knee. J Biomech Eng 113:263–269

    Article  CAS  PubMed  Google Scholar 

  4. DeFrate LE, Gill TJ, Li G (2004) In vivo function of the posterior cruciate ligament during weightbearing knee flexion. Am J Sports Med 32:1923–1928

    Article  PubMed  Google Scholar 

  5. DeFrate LE, Papannagari R, Gill TJ, Moses JM, Pathare NP, Li G (2006) The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am J Sports Med 34:1240–1246

    Article  PubMed  Google Scholar 

  6. Delport H, Labey L, De Corte R, Innocenti B, Vander Sloten J, Bellemans J (2013) Collateral ligament strains during knee joint laxity evaluation before and after TKA. Clin Biomech (Bristol, Avon) 28:777–782

    Article  Google Scholar 

  7. Engh GA (2003) The difficult knee: severe varus and valgus. Clin Orthop Relat Res (416):58–63

  8. Ghosh KM, Merican AM, Iranpour F, Deehan DJ, Amis AA (2012) Length-change patterns of the collateral ligaments after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 20:1349–1356

    Article  PubMed  Google Scholar 

  9. Halewood C, Risebury M, Thomas NP, Amis AA (2014) Kinematic behaviour and soft tissue management in guided motion total knee replacement. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-014-2933-5

    PubMed  Google Scholar 

  10. Handrigan G, Hue O, Simoneau M, Corbeil P, Marceau P, Marceau S, Tremblay A, Teasdale N (2010) Weight loss and muscular strength affect static balance control. Int J Obes (Lond) 34:936–942

    Article  CAS  Google Scholar 

  11. Hoshino Y, Wang JH, Lorenz S, Fu FH, Tashman S (2012) The effect of distal femur bony morphology on in vivo knee translational and rotational kinematics. Knee Surg Sports Traumatol Arthrosc 20:1331–1338

    Article  PubMed Central  PubMed  Google Scholar 

  12. Hosseini A, Gill TJ, Li G (2009) In vivo anterior cruciate ligament elongation in response to axial tibial loads. J Orthop Sci 14:298–306

    Article  PubMed Central  PubMed  Google Scholar 

  13. Jordan SS, DeFrate LE, Nha KW, Papannagari R, Gill TJ, Li G (2007) The in vivo kinematics of the anteromedial and posterolateral bundles of the anterior cruciate ligament during weightbearing knee flexion. Am J Sports Med 35:547–554

    Article  PubMed  Google Scholar 

  14. Kim YH, Choi Y, Kim JS (2009) Range of motion of standard and high-flexion posterior cruciate-retaining total knee prostheses a prospective randomized study. J Bone Joint Surg Am 91:1874–1881

    Article  PubMed  Google Scholar 

  15. Kim YH, Choi Y, Kwon OR, Kim JS (2009) Functional outcome and range of motion of high-flexion posterior cruciate-retaining and high-flexion posterior cruciate-substituting total knee prostheses. A prospective, randomized study. J Bone Joint Surg Am 91:753–760

    Article  PubMed  Google Scholar 

  16. Konig C, Matziolis G, Sharenkov A, Taylor WR, Perka C, Duda GN, Heller MO (2011) Collateral ligament length change patterns after joint line elevation may not explain midflexion instability following TKA. Med Eng Phys 33:1303–1308

    Article  PubMed  Google Scholar 

  17. Li G, DeFrate LE, Sun H, Gill TJ (2004) In vivo elongation of the anterior cruciate ligament and posterior cruciate ligament during knee flexion. Am J Sports Med 32:1415–1420

    Article  PubMed  Google Scholar 

  18. Li G, Wuerz TH, DeFrate LE (2004) Feasibility of using orthogonal fluoroscopic images to measure in vivo joint kinematics. J Biomech Eng 126:314–318

    PubMed  Google Scholar 

  19. Li G, Zayontz S, Most E, DeFrate LE, Suggs JF, Rubash HE (2004) In situ forces of the anterior and posterior cruciate ligaments in high knee flexion: an in vitro investigation. J Orthop Res 22:293–297

    Article  PubMed  Google Scholar 

  20. Li N, Tan Y, Deng Y, Chen L (2014) Posterior cruciate-retaining versus posterior stabilized total knee arthroplasty: a meta-analysis of randomized controlled trials. Knee Surg Sports Traumatol Arthrosc 22(3):556–564

    Article  PubMed  Google Scholar 

  21. Lionberger DR, Eggers MD, Brewer KE, Fang L (2012) Improved knee flexion following high-flexion total knee arthroplasty. J Orthop Surg Res 7:22

    Article  PubMed Central  PubMed  Google Scholar 

  22. Liu F, Gadikota HR, Kozanek M, Hosseini A, Yue B, Gill TJ, Rubash HE, Li G (2011) In vivo length patterns of the medial collateral ligament during the stance phase of gait. Knee Surg Sports Traumatol Arthrosc 19:719–727

    Article  PubMed Central  PubMed  Google Scholar 

  23. Liu F, Yue B, Gadikota HR, Kozanek M, Liu W, Gill TJ, Rubash HE, Li G (2010) Morphology of the medial collateral ligament of the knee. J Orthop Surg Res 5:69

    Article  PubMed Central  PubMed  Google Scholar 

  24. Luo SX, Zhao JM, Su W, Li XF, Dong GF (2012) Posterior cruciate substituting versus posterior cruciate retaining total knee arthroplasty prostheses: a meta-analysis. Knee 19:246–252

    Article  PubMed  Google Scholar 

  25. Mendiguchia J, Ford KR, Quatman CE, Alentorn-Geli E, Hewett TE (2011) Sex differences in proximal control of the knee joint. Sports Med 41:541–557

    Article  PubMed Central  PubMed  Google Scholar 

  26. Mihalko WM, Whiteside LA (2003) Bone resection and ligament treatment for flexion contracture in knee arthroplasty. Clin Orthop Relat Res 406:141–147

    Article  PubMed  Google Scholar 

  27. Padua DA, Carcia CR, Arnold BL, Granata KP (2005) Gender differences in leg stiffness and stiffness recruitment strategy during two-legged hopping. J Mot Behav 37:111–125

    Article  PubMed Central  PubMed  Google Scholar 

  28. Page Glave A, Di Brezzo R, Applegate DK, Olson JM (2014) The effects of obesity classification method on select kinematic gait variables in adult females. J Sports Med Phys Fit 54:197–202

    CAS  Google Scholar 

  29. Papannagari R, DeFrate LE, Nha KW, Moses JM, Moussa M, Gill TJ, Li G (2007) Function of posterior cruciate ligament bundles during in vivo knee flexion. Am J Sports Med 35:1507–1512

    Article  PubMed  Google Scholar 

  30. Park SE, DeFrate LE, Suggs JF, Gill TJ, Rubash HE, Li G (2005) The change in length of the medial and lateral collateral ligaments during in vivo knee flexion. Knee 12:377–382

    Article  PubMed  Google Scholar 

  31. Park SE, DeFrate LE, Suggs JF, Gill TJ, Rubash HE, Li G (2006) Erratum to “The change in length of the medial and lateral collateral ligaments during in vivo knee flexion”. Knee 13:77–82

    Article  PubMed  Google Scholar 

  32. Sasanuma H, Sekiya H, Takatoku K, Takada H, Sugimoto N (2010) Evaluation of soft-tissue balance during total knee arthroplasty. J Orthop Surg (Hong Kong) 18:26–30

    Google Scholar 

  33. Schirm AC, Jeffcote BO, Nicholls RL, Jakob H, Kuster MS (2011) Sensitivity of knee soft-tissues to surgical technique in total knee arthroplasty. Knee 18:180–184

    Article  PubMed  Google Scholar 

  34. Sumino T, Gadikota HR, Varadarajan KM, Kwon YM, Rubash HE, Li G (2011) Do high flexion posterior stabilised total knee arthroplasty designs increase knee flexion? A meta analysis. Int Orthop 35:1309–1319

    Article  PubMed Central  PubMed  Google Scholar 

  35. Yang Z, Wickwire AC, Debski RE (2010) Development of a subject-specific model to predict the forces in the knee ligaments at high flexion angles. Med Biol Eng Comput 48:1077–1085

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the National Institutes of Health (R01 AR055612) and the scholarship provided by the Chinese PLA General Hospital.

Conflict of interest

There is no potential conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, A., Qi, W., Tsai, TY. et al. In vivo length change patterns of the medial and lateral collateral ligaments along the flexion path of the knee. Knee Surg Sports Traumatol Arthrosc 23, 3055–3061 (2015). https://doi.org/10.1007/s00167-014-3306-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-014-3306-9

Keywords

Navigation