Skip to main content

Advertisement

Log in

Delayed awakening after cardiac arrest: prevalence and risk factors in the Parisian registry

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

Although prolonged unconsciousness after cardiac arrest (CA) is a sign of poor neurological outcome, limited evidence shows that a late recovery may occur in a minority of patients. We investigated the prevalence and the predictive factors of delayed awakening in comatose CA survivors treated with targeted temperature management (TTM).

Methods

Retrospective analysis of the Parisian Region Out-of-Hospital CA Registry (2008–2013). In adult comatose CA survivors treated with TTM, sedated with midazolam and fentanyl, time to awakening was measured starting from discontinuation of sedation at the end of rewarming. Awakening was defined as delayed when it occurred after more than 48 h.

Results

A total of 326 patients (71 % male, mean age 59 ± 16 years) were included, among whom 194 awoke. Delayed awakening occurred in 56/194 (29 %) patients, at a median time of 93 h (IQR 70–117) from discontinuation of sedation. In 5/56 (9 %) late awakeners, pupillary reflex and motor response were both absent 48 h after sedation discontinuation. In multivariate analysis, age over 59 years (OR 2.1, 95 % CI 1.0–4.3), post-resuscitation shock (OR 2.6 [1.3–5.2]), and renal insufficiency at admission (OR 3.1 [1.4–6.8]) were associated with significantly higher rates of delayed awakening.

Conclusions

Delayed awakening is common among patients recovering from coma after CA. Renal insufficiency, older age, and post-resuscitation shock were independent predictors of delayed awakening. Presence of unfavorable neurological signs at 48 h after rewarming from TTM and discontinuation of sedation did not rule out recovery of consciousness in late awakeners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CA:

Cardiac arrest

CPC:

Cerebral performance category

CPR:

Cardiopulmonary resuscitation

EEG:

Electroencephalography

ESM:

Electronic supplementary material

GCS:

Glasgow coma scale

GFR:

Glomerular filtration rate

ICU:

Intensive care unit

IQR:

Interquartile range

RASS:

Richmond agitation-sedation scale

ROSC:

Return of spontaneous circulation

SD:

Standard deviation

SSEP:

Short-latency somatosensory evoked potentials

TTM:

Targeted temperature management

WLST:

Withdrawal of life-sustaining treatments

References

  1. Madl C, Holzer M (2004) Brain function after resuscitation from cardiac arrest. Curr Opin Crit Care 10:213–217

    Article  PubMed  Google Scholar 

  2. Nolan JP, Soar J, Cariou A et al (2015) European Resuscitation Council and European Society of Intensive Care Medicine 2015 guidelines for post-resuscitation care. Intensive Care Med 41:2039–2056

    Article  PubMed  Google Scholar 

  3. Dragancea I, Rundgren M, Englund E et al (2013) The influence of induced hypothermia and delayed prognostication on the mode of death after cardiac arrest. Resuscitation 84:337–342. doi:10.1016/j.resuscitation.2012.09.015

    Article  PubMed  Google Scholar 

  4. Lemiale V, Dumas F, Mongardon N et al (2013) Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort. Intensive Care Med 39:1972–1980. doi:10.1007/s00134-013-3043-4

    Article  PubMed  Google Scholar 

  5. Perman SM, Kirkpatrick JN, Reitsma AM et al (2012) Timing of neuroprognostication in postcardiac arrest therapeutic hypothermia*. Crit Care Med 40:719–724. doi:10.1097/CCM.0b013e3182372f93

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sandroni C, Cariou A, Cavallaro F et al (2014) Prognostication in comatose survivors of cardiac arrest: an advisory statement from the European Resuscitation Council and the European Society of Intensive Care Medicine. Intensive Care Med 40:1816–1831. doi:10.1007/s00134-014-3470-x

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jørgensen EO, Holm S (1998) The natural course of neurological recovery following cardiopulmonary resuscitation. Resuscitation 36:111–122

    Article  PubMed  Google Scholar 

  8. Zandbergen EGJ, de Haan RJ, Reitsma JB, Hijdra A (2003) Survival and recovery of consciousness in anoxic-ischemic coma after cardiopulmonary resuscitation. Intensive Care Med 29:1911–1915. doi:10.1007/s00134-003-1951-4

    Article  PubMed  Google Scholar 

  9. Gold B, Puertas L, Davis SP et al (2014) Awakening after cardiac arrest and post resuscitation hypothermia: are we pulling the plug too early? Resuscitation 85:211–214. doi:10.1016/j.resuscitation.2013.10.030

    Article  PubMed  Google Scholar 

  10. Grossestreuer AV, Abella BS, Leary M et al (2013) Time to awakening and neurologic outcome in therapeutic hypothermia-treated cardiac arrest patients. Resuscitation 84:1741–1746. doi:10.1016/j.resuscitation.2013.07.009

    Article  PubMed  Google Scholar 

  11. Mulder M, Gibbs HG, Smith SW et al (2014) Awakening and withdrawal of life-sustaining treatment in cardiac arrest survivors treated with therapeutic hypothermia. Crit Care Med 42:2493–2499. doi:10.1097/CCM.0000000000000540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Geri G, Guillemet L, Dumas F et al (2015) Acute kidney injury after out-of-hospital cardiac arrest: risk factors and prognosis in a large cohort. Intensive Care Med. doi:10.1007/s00134-015-3848-4

    PubMed  Google Scholar 

  13. Dumas F, Grimaldi D, Zuber B et al (2011) Is hypothermia after cardiac arrest effective in both shockable and nonshockable patients?: insights from a large registry. Circulation 123:877–886. doi:10.1161/CIRCULATIONAHA.110.987347

    Article  PubMed  Google Scholar 

  14. Dumas F, Bougouin W, Geri G et al (2014) Is epinephrine during cardiac arrest associated with worse outcomes in resuscitated patients? J Am Coll Cardiol 64:2360–2367. doi:10.1016/j.jacc.2014.09.036

    Article  CAS  PubMed  Google Scholar 

  15. Chelly J, Mongardon N, Dumas F et al (2012) Benefit of an early and systematic imaging procedure after cardiac arrest: insights from the PROCAT (Parisian Region Out of Hospital Cardiac Arrest) registry. Resuscitation 83:1444–1450. doi:10.1016/j.resuscitation.2012.08.321

    Article  PubMed  Google Scholar 

  16. Dumas F, Cariou A, Manzo-Silberman S et al (2010) Immediate percutaneous coronary intervention is associated with better survival after out-of-hospital cardiac arrest: insights from the PROCAT (Parisian Region Out of hospital Cardiac ArresT) registry. Circ Cardiovasc Interv 3:200–207. doi:10.1161/CIRCINTERVENTIONS.109.913665

    Article  PubMed  Google Scholar 

  17. Ely EW, Truman B, Shintani A et al (2003) Monitoring sedation status over time in ICU patients: reliability and validity of the Richmond Agitation-Sedation Scale (RASS). JAMA 289:2983–2991. doi:10.1001/jama.289.22.2983

    Article  PubMed  Google Scholar 

  18. Perkins GD, Jacobs IG, Nadkarni VM et al (2014) Cardiac arrest and cardiopulmonary resuscitation outcome reports: update of the Utstein resuscitation registry templates for out-of-hospital cardiac arrest. Resuscitation 96:328–340

    Article  PubMed  Google Scholar 

  19. Levey AS, Bosch JP, Lewis JB et al (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of diet in renal disease study group. Ann Intern Med 130:461–470

    Article  CAS  PubMed  Google Scholar 

  20. Rossetti AO, Lowenstein DH (2011) Management of refractory status epilepticus in adults: still more questions than answers. Lancet Neurol 10:922–930. doi:10.1016/S1474-4422(11)70187-9

    Article  PubMed  PubMed Central  Google Scholar 

  21. Andresen JM, Girard TD, Pandharipande PP et al (2014) Burst suppression on processed electroencephalography as a predictor of postcoma delirium in mechanically ventilated ICU patients. Crit Care Med 42:2244–2251. doi:10.1097/CCM.0000000000000522

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jennett B, Bond M (1975) Assessment of outcome after severe brain damage. Lancet 1:480–484

    Article  CAS  PubMed  Google Scholar 

  23. Vinik HR, Reves JG, Greenblatt DJ et al (1983) The pharmacokinetics of midazolam in chronic renal failure patients. Anesthesiology 59:390–394

    Article  CAS  PubMed  Google Scholar 

  24. Driessen JJ, Vree TB, Guelen PJ (1991) The effects of acute changes in renal function on the pharmacokinetics of midazolam during long-term infusion in ICU patients. Acta Anaesthesiol Belg 42:149–155

    CAS  PubMed  Google Scholar 

  25. Fragen RJ (1997) Pharmacokinetics and pharmacodynamics of midazolam given via continuous intravenous infusion in intensive care units. Clin Ther 19:405–419; discussion 367–368

    Article  CAS  PubMed  Google Scholar 

  26. Swart EL, de Jongh J, Zuideveld KP et al (2005) Population pharmacokinetics of lorazepam and midazolam and their metabolites in intensive care patients on continuous venovenous hemofiltration. Am J Kidney Dis 45:360–371

    Article  CAS  PubMed  Google Scholar 

  27. Chua H-R, Glassford N, Bellomo R (2012) Acute kidney injury after cardiac arrest. Resuscitation 83:721–727. doi:10.1016/j.resuscitation.2011.11.030

    Article  PubMed  Google Scholar 

  28. Tujjar O, Mineo G, Dell’Anna A et al (2015) Acute kidney injury after cardiac arrest. Crit Care 19:169. doi:10.1186/s13054-015-0900-2

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sandroni C, Dell’anna AM, Tujjar O et al. (2016) Acute kidney injury (AKI) after cardiac arrest: a systematic review and meta-analysis of clinical studies. Minerva Anestesiol (Epub ahead of print)

  30. Choi L, Ferrell BA, Vasilevskis EE et al (2015) Population pharmacokinetics of fentanyl in the critically ill. Crit Care Med 44:64–72

    Article  Google Scholar 

  31. Butler JM, Begg EJ (2008) Free drug metabolic clearance in elderly people. Clin Pharmacokinet 47:297–321. doi:10.2165/00003088-200847050-00002

    Article  CAS  PubMed  Google Scholar 

  32. Polasek TM, Miners JO (2008) Time-dependent inhibition of human drug metabolizing cytochromes P450 by tricyclic antidepressants. Br J Clin Pharmacol 65:87–97. doi:10.1111/j.1365-2125.2007.02964.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Arcangeli A, Antonelli M, Mignani V, Sandroni C (2005) Sedation in PACU: the role of benzodiazepines. Curr Drug Targets 6:745–748

    Article  CAS  PubMed  Google Scholar 

  34. Greenblatt DJ, Abernethy DR, Locniskar A et al (1984) Effect of age, gender, and obesity on midazolam kinetics. Anesthesiology 61:27–35

    Article  CAS  PubMed  Google Scholar 

  35. Tortorici MA, Kochanek PM, Poloyac SM (2007) Effects of hypothermia on drug disposition, metabolism, and response: a focus of hypothermia-mediated alterations on the cytochrome P450 enzyme system. Crit Care Med 35:2196–2204

    Article  CAS  PubMed  Google Scholar 

  36. Bjelland TW, Klepstad P, Haugen BO et al (2013) Effects of hypothermia on the disposition of morphine, midazolam, fentanyl, and propofol in intensive care unit patients. Drug Metab Dispos 41:214–223. doi:10.1124/dmd.112.045567

    Article  CAS  PubMed  Google Scholar 

  37. Arpino PA, Greer DM (2008) Practical pharmacologic aspects of therapeutic hypothermia after cardiac arrest. Pharmacotherapy 28:102–111. doi:10.1592/phco.28.1.102

    Article  CAS  PubMed  Google Scholar 

  38. Dragancea I, Horn J, Kuiper M et al (2015) Neurological prognostication after cardiac arrest and targeted temperature management 33°C versus 36°C: results from a randomised controlled clinical trial. Resuscitation 93:164–170. doi:10.1016/j.resuscitation.2015.04.013

    Article  PubMed  Google Scholar 

  39. Chamorro C, Borrallo JM, Romera MA et al (2010) Anesthesia and analgesia protocol during therapeutic hypothermia after cardiac arrest: a systematic review. Anesth Analg 110:1328–1335. doi:10.1213/ANE.0b013e3181d8cacf

    Article  CAS  PubMed  Google Scholar 

  40. Kamps MJA, Horn J, Oddo M et al (2013) Prognostication of neurologic outcome in cardiac arrest patients after mild therapeutic hypothermia: a meta-analysis of the current literature. Intensive Care Med 39:1671–1682. doi:10.1007/s00134-013-3004-y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Nancy Kentish-Barnes for her help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Cariou.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Marine Paul and Wulfran Bougouin contributed equally to this work; Claudio Sandroni and Alain Cariou contributed equally to this work.

Take-home message: Delayed awakening from coma after cardiac arrest is frequent, occurring in almost one-third of patients; renal insufficiency, older age. and post-resuscitation shock are independent predictors of delayed awakening. In patients presenting one or more of these factors, an observation period longer than the minimum recommended should be respected before neuroprognostication assessment.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, M., Bougouin, W., Geri, G. et al. Delayed awakening after cardiac arrest: prevalence and risk factors in the Parisian registry. Intensive Care Med 42, 1128–1136 (2016). https://doi.org/10.1007/s00134-016-4349-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-016-4349-9

Keywords

Navigation