Skip to main content

Advertisement

Log in

Blood glucose level and outcome after cardiac arrest: insights from a large registry in the hypothermia era

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Introduction

The influence of blood glucose (BG) level during the post-resuscitation period after out-of-hospital cardiac arrest (OHCA) is still debated. To evaluate the relationship between blood glucose level and outcome, we included the median glycemia and its maximal amplitude over the first 48 h following ICU admission in an analysis of outcome predictors.

Methods

We conducted a database study in a cardiac arrest center in Paris, France. Between 2006 and 2010, we included 381 patients who were all resuscitated from an OHCA. A moderate glycemic control was applied in all patients. The median glycemia and the largest change over the first 48 h were included in a multivariate analysis that was performed to determine parameters associated with a favorable outcome.

Results

Of the 381 patients, 136 (36 %) had a favorable outcome (CPC 1–2). Median BG level was 7.6 mmol/L (6.3–9.8) in patients with a favorable outcome compared to 9.0 mmol/L (IQR 7.1–10.6) for patients with an unfavorable outcome (p < 0.01). Median BG level variation was 7.1 (4.2–11) and 9.6 (5.9–13.6) mmol/L in patients with and without a favorable outcome, respectively (p < 0.01). In multivariate analysis, an increased median BG level over the first 48 h was found to be an independent predictor of poor issue [OR = 0.43; 95 % CI (0.24–0.78), p = 0.006]. Finally a progressive increase in median BG level was associated with a progressive increase in the proportion of patients with a poor outcome.

Conclusion

We observed a relationship between high blood glucose level and outcome after cardiac arrest. These results suggest the need to test a strategy combining both control of glycemia and minimization of glycemic variations for its ability to improve post-resuscitation care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mongardon N, Dumas F, Ricome S et al (2011) Postcardiac arrest syndrome: from immediate resuscitation to long-term outcome. Ann Intensive Care 1:45. doi:10.1186/2110-5820-1-45

    Article  PubMed Central  PubMed  Google Scholar 

  2. Siemkowicz E (1981) Hyperglycemia in the reperfusion period hampers recovery from cerebral ischemia. Acta Neurol Scand 64:207–216

    Article  CAS  PubMed  Google Scholar 

  3. Siemkowicz E, Hansen AJ (1978) Clinical restitution following cerebral ischemia in hypo-, normo- and hyperglycemic rats. Acta Neurol Scand 58:1–8

    Article  CAS  PubMed  Google Scholar 

  4. Welsh FA, Ginsberg MD, Rieder W, Budd WW (1980) Deleterious effect of glucose pretreatment on recovery from diffuse cerebral ischemia in the cat. II. Regional metabolite levels. Stroke 11:355–363

    Article  CAS  PubMed  Google Scholar 

  5. Gore DC, Chinkes D, Heggers J et al (2001) Association of hyperglycemia with increased mortality after severe burn injury. J Trauma 51:540–544

    Article  CAS  PubMed  Google Scholar 

  6. Niemann JT, Youngquist S, Rosborough JP (2011) Does early postresuscitation stress hyperglycemia affect 72-hour neurologic outcome? Preliminary observations in the Swine model. Prehosp Emerg Care 15:405–409. doi:10.3109/10903127.2011.569847

    Article  PubMed Central  PubMed  Google Scholar 

  7. Escolar JC, Hoo-Paris R, Castex C, Sutter BC (1987) Effect of low temperatures on glucose-induced insulin secretion and ionic fluxes in rat pancreatic islets. J Endocrinol 115:225–231

    Article  CAS  PubMed  Google Scholar 

  8. Sasaki Y, Takahashi H, Aso H et al (1982) Effects of cold exposure on insulin and glucagon secretion in sheep. Endocrinology 111:2070–2076. doi:10.1210/endo-111-6-2070

    Article  CAS  PubMed  Google Scholar 

  9. Nielsen N, Sunde K, Hovdenes J et al (2011) Adverse events and their relation to mortality in out-of-hospital cardiac arrest patients treated with therapeutic hypothermia. Crit Care Med 39:57–64. doi:10.1097/CCM.0b013e3181fa4301

    Article  PubMed  Google Scholar 

  10. Nurmi J, Boyd J, Anttalainen N et al (2012) Early increase in blood glucose in patients resuscitated from out-of-hospital ventricular fibrillation predicts poor outcome. Diabetes Care 35:510–512. doi:10.2337/dc11-1478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Cueni-Villoz N, Devigili A, Delodder F et al (2011) Increased blood glucose variability during therapeutic hypothermia and outcome after cardiac arrest. Crit Care Med 39:2225–2231. doi:10.1097/CCM.0b013e31822572c9

    Article  PubMed  Google Scholar 

  12. Peberdy MA, Callaway CW, Neumar RW et al (2010) Part 9: post-cardiac arrest care: 2010 American Heart Association Guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 122:S768–S786. doi:10.1161/CIRCULATIONAHA.110.971002

    Article  PubMed  Google Scholar 

  13. Daviaud F (2013) Blood glucose level and outcome after cardiac arrest: insights from a large registry in the hypothermia era. European Society of Intensive Care Medicine, Paris

    Google Scholar 

  14. Safar P, Bircher NG (1988) Cardiopulmonary cerebral resuscitation: basic and advanced cardiac and trauma life support: an introduction to resuscitation medicine. Saunders, London

  15. Phelps R, Dumas F, Maynard C et al (2013) Cerebral performance category and long-term prognosis following out-of-hospital cardiac arrest. Crit Care Med 41:1252–1257. doi:10.1097/CCM.0b013e31827ca975

    Article  PubMed  Google Scholar 

  16. Jacobs I, Nadkarni V, Bahr J et al (2004) Cardiac arrest and cardiopulmonary resuscitation outcome reports: update and simplification of the Utstein templates for resuscitation registries: a statement for healthcare professionals from a task force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian Resuscitation Council, New Zealand Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Councils of Southern Africa). Circulation 110:3385–3397. doi:10.1161/01.CIR.0000147236.85306.15

    Article  PubMed  Google Scholar 

  17. Sterz F, Holzer M, Roine R et al (2003) Hypothermia after cardiac arrest: a treatment that works. Curr Opin Crit Care 9:205–210

    Article  PubMed  Google Scholar 

  18. Weekers F, Giulietti A-P, Michalaki M et al (2003) Metabolic, endocrine, and immune effects of stress hyperglycemia in a rabbit model of prolonged critical illness. Endocrinology 144:5329–5338. doi:10.1210/en.2003-0697

    Article  CAS  PubMed  Google Scholar 

  19. Capes SE, Hunt D, Malmberg K et al (2001) Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview. Stroke 32:2426–2432

    Article  CAS  PubMed  Google Scholar 

  20. Longstreth WT Jr, Inui TS (1984) High blood glucose level on hospital admission and poor neurological recovery after cardiac arrest. Ann Neurol 15:59–63. doi:10.1002/ana.410150111

    Article  PubMed  Google Scholar 

  21. Skrifvars MB, Pettilä V, Rosenberg PH, Castrén M (2003) A multiple logistic regression analysis of in-hospital factors related to survival at six months in patients resuscitated from out-of-hospital ventricular fibrillation. Resuscitation 59:319–328

    Article  CAS  PubMed  Google Scholar 

  22. Nielsen N, Wetterslev J, Cronberg T et al (2013) Targeted temperature management at 33°C versus 36°C after cardiac arrest. N Engl J Med 369:2197–2206. doi:10.1056/NEJMoa1310519

    Article  CAS  PubMed  Google Scholar 

  23. Monnier L, Mas E, Ginet C et al (2006) Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 295:1681–1687. doi:10.1001/jama.295.14.1681

    Article  CAS  PubMed  Google Scholar 

  24. Quagliaro L, Piconi L, Assaloni R et al (2003) Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes 52:2795–2804

    Article  CAS  PubMed  Google Scholar 

  25. Risso A, Mercuri F, Quagliaro L et al (2001) Intermittent high glucose enhances apoptosis in human umbilical vein endothelial cells in culture. Am J Physiol Endocrinol Metab 281:E924–E930

    CAS  PubMed  Google Scholar 

  26. Watada H, Azuma K, Kawamori R (2007) Glucose fluctuation on the progression of diabetic macroangiopathy–new findings from monocyte adhesion to endothelial cells. Diabetes Res Clin Pract 77(Suppl 1):S58–S61. doi:10.1016/j.diabres.2007.01.034

    Article  CAS  PubMed  Google Scholar 

  27. Ali NA, O’Brien JM Jr, Dungan K et al (2008) Glucose variability and mortality in patients with sepsis. Crit Care Med 36:2316–2321. doi:10.1097/CCM.0b013e3181810378

    Article  PubMed Central  PubMed  Google Scholar 

  28. Egi M, Bellomo R, Stachowski E et al (2006) Variability of blood glucose concentration and short-term mortality in critically ill patients. Anesthesiology 105:244–252

    Article  CAS  PubMed  Google Scholar 

  29. Krinsley JS (2008) Glycemic variability: a strong independent predictor of mortality in critically ill patients. Crit Care Med 36:3008–3013. doi:10.1097/CCM.0b013e31818b38d2

    Article  CAS  PubMed  Google Scholar 

  30. Oksanen T, Skrifvars MB, Varpula T et al (2007) Strict versus moderate glucose control after resuscitation from ventricular fibrillation. Intensive Care Med 33:2093–2100. doi:10.1007/s00134-007-0876-8

    Article  CAS  PubMed  Google Scholar 

  31. Mongardon N, Perbet S, Lemiale V et al (2011) Infectious complications in out-of-hospital cardiac arrest patients in the therapeutic hypothermia era. Crit Care Med 39:1359–1364. doi:10.1097/CCM.0b013e3182120b56

    Article  PubMed  Google Scholar 

  32. Lemiale V, Dumas F, Mongardon N et al (2013) Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort. Intensive Care Med 39:1972–1980. doi:10.1007/s00134-013-3043-4

    Article  PubMed  Google Scholar 

  33. Mackenzie IMJ, Whitehouse T, Nightingale PG (2011) The metrics of glycaemic control in critical care. Intensive Care Med 37:435–443. doi:10.1007/s00134-010-2103-2

    Article  CAS  PubMed  Google Scholar 

  34. Sylvain HF, Pokorny ME, English SM et al (1995) Accuracy of fingerstick glucose values in shock patients. Am J Crit Care 4:44–48

    CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Cariou.

Additional information

Take-home message: The role of glycemia during the post-resuscitation period in cardiac arrest patients is unknown. In this study we found that a high level of glycemia during the first 48 h following a cardiac arrest was associated with a poor outcome.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material Fig. 1: decision algorithm for post-CA patients (DOCX 343 kb)

134_2014_3269_MOESM2_ESM.doc

Supplementary material Table 1: insulin administration protocol. Outcome assessment and life support treatment withdrawal (DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daviaud, F., Dumas, F., Demars, N. et al. Blood glucose level and outcome after cardiac arrest: insights from a large registry in the hypothermia era. Intensive Care Med 40, 855–862 (2014). https://doi.org/10.1007/s00134-014-3269-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-014-3269-9

Keywords

Navigation