Skip to main content
Log in

Fetale Programmierung der gonadalen Reifung

Fetal programming of gonadal maturation

  • Leitthema
  • Published:
Der Gynäkologe Aims and scope

Zusammenfassung

Es gibt zunehmende Hinweise, dass eine frühe intrauterine fetale (Fehl-)Programmierung nicht nur Auswirkungen auf die kardiovaskuläre und metabolische Regulation im späteren Leben hat, sondern dass auch die reproduktive Funktion dadurch beeinflusst wird. Eine intrauterine Wachstumsretardierung kann mit einer vorzeitigen Reifung der gonadalen Funktion und einer Vorverlegung der Pubertät und des Menarchealters verbunden sein. Insbesondere durch pränatale Androgeneffekte werden sowohl die Entwicklung von Ovarien und äußeren Genitalien selbst als auch die neuroendokrine Regulation der hypothalamisch-hypophysär-ovariellen Achse ungünstig beeinflusst, sodass im späteren Leben häufiger ein polyzystisches Ovarialsyndrom mit Hyperandrogenämie und Ovulationsstörungen auftritt. Diese tierexperimentell klar nachweisbaren Zusammenhänge bedürfen jedoch noch weiterer Belege durch epidemiologische und klinische Untersuchungen am Menschen.

Abstract

There is increasing evidence suggesting that (faulty) early intrauterine fetal programming not only determines cardiovascular and metabolic regulation in later life, but also influences reproductive function. Intrauterine growth restriction may be related to precocious maturation of gonadal function, with earlier onset of puberty and earlier menarche. Prenatal effects of androgens in particular have a negative influence on the development of the ovaries and external female genitalia, and also on the neuroendocrine feedback regulation of the hypothalamic-pituitary-gonadal axis, making polycystic ovary syndrome with hyperandogenism and anovulation more likely than would otherwise be the case in later life. These links have been clearly demonstrated in animal experiments, but further confirmation in human subjects is needed, which will require epidemiological and clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Abbott DH, Barnett DK, Bruns CM, Dumesic DA (2005) Androgen excess fetal programming of female reproduction: a developmental aetiology for polycystic ovary syndrome? Hum Reprod Update 11: 357–374

    Article  PubMed  Google Scholar 

  2. Adair LS (2001) Size at birth predicts age at menarche. Pediatrics 107: E59

    Article  PubMed  Google Scholar 

  3. Barker DJP (1998) In utero programming of chronic disease. Clin Sci 95: 115–128

    Article  PubMed  Google Scholar 

  4. Barnes RB, Rosenfield RL, Ehrmann DA et al. (1994) Ovarian hyperandrogenism as a result of congenital adrenal virilizing disorders: evidence for perinatal masculinization of neuroendocrine function in women. J Clin Endocrinol Metab 79: 1328–1333

    Article  PubMed  Google Scholar 

  5. Berankova H (1997) Maturation and fertility in women with low birthweights. Cas Lek Cesk 136: 413–415

    PubMed  Google Scholar 

  6. Bhargava SK, Ramji S, Srivastava U et al. (1995) Growth and sexual maturation of low birthweight children: a 14 year follow up. Indian Pediatr 32: 963–970

    PubMed  Google Scholar 

  7. Cicognani A, Alessandroni R, Pasini A et al. (2002) Low birth weight for gestational age and subsequent male gonadal function. J Pediatr 141(3): 376–379

    Article  PubMed  Google Scholar 

  8. Cresswell J, Barker DJ, Osmond C et al. (1997) Fetal growth, length of gestation, and polycystic ovaries in adult life. Lancet 150: 1131–1135

    Article  Google Scholar 

  9. Bruin de JP, Dorland M, Bruinse HW et al. (1998) Fetal growth retardation as a cause of impaired ovarian development. Early Hum Dev 51: 39–46

    Article  PubMed  Google Scholar 

  10. Zegher de F, Ibanez L (2006) Prenatal growth restraint followed by catch-up of weight: a hyperinsulinemic pathway to polycystic ovary syndrome. Fertil Steril 86: 4–5

    Google Scholar 

  11. Dörner G (1976) Hormones and brain differentiation. Elsevier, Amsterdam

  12. Dörner G, Götz F, Rohde W et al. (2001) Genetic and epigenetic effects on sexual brain organization mediated by sex hormones. Neuroendocrinol Lett 22: 403–409

    PubMed  Google Scholar 

  13. Dumesic DA, Abbott DH, Eisner JR, Goy RW (1997) Prenatal exposure of female rhesus monkeys to testosterone propionate increases serum luteinizing hormone levels in adulthood. Fertil Steril 67: 155–163

    Article  PubMed  Google Scholar 

  14. Eisner JR, Dumesic DA, Kemnitz JW, Abbott DH (2000) Timing of prenatal androgen excess determines differential impairment in insulin secretion and action in adult female rhesus monkeys. J Clin Endocrinol Metab 85: 1206–1210

    Article  PubMed  Google Scholar 

  15. Fledelius HC (1982) Inhibited growth and development as permanent features of low birthweight. A longitudinal study of eye size, height, head circumference, interpupillary distance and exophtalmometry, as measured at the age of 10 and 18 years. Acta Paediatr Scand 71: 645–650

    PubMed  Google Scholar 

  16. Franks S (1995) Polycystic ovary syndrome. N Engl J Med 333: 853–861

    Article  PubMed  Google Scholar 

  17. Gluckman PD, Hansons MA (2006) Evolution, development and timing of puberty. Trends Endocrinol Metab 17: 7–12

    Article  PubMed  Google Scholar 

  18. Hogeveen KN, Cousin P, Pugeat M et al. GL (2002) Human sex hormone-binding globulin variants associated with hyperandrogenism and ovarian dysfunction. J Clin Invest 109: 973–981

    Article  PubMed  Google Scholar 

  19. Hokken-Koelega ACS (2002) Timing of puberty and fetal growth. Best Pract Clin Endocrinol Metab 16: 65–71

    Article  Google Scholar 

  20. Ibanez L, Potau N, Virdis R et al. (1993) Postpubertal outcome in girls diagnosed of premature pubarche during childhood: increased frequency of functional ovarian hyperandrogenism. J Clin Endocrinol Metab 76: 1599–1603

    Article  PubMed  Google Scholar 

  21. Ibanez L, Potau N, Enriquez G, de Zegher F (2000) Reduced uterine and ovarian size in adolescent girls born small for gestational age. Pediatr Res 47: 575–577

    PubMed  Google Scholar 

  22. Ibanez L, Potau N, de Zegher F (2000) Ovarian hyporesponsiveness to follicle stimulating hormone in adolescent girls born small for gestational age. J Clin Endocrinol Metab 85: 2624–2626

    Article  PubMed  Google Scholar 

  23. Ibanez L, Valls C, Potau N, Marcos MV, de Zegher F (2001) Polycystic ovary syndrome after precocious pubarche: ontogeny of the low birthweight effect. Clin Endocrinol (Oxf) 55: 667–672

    Google Scholar 

  24. Ibanez L, Potau N, Ferrer A et al. (2002) Reduced ovulation rate in adolescent girls born small for gestational age. J Clin Endocrinol Metab 87: 3391–3393

    Article  PubMed  Google Scholar 

  25. Ibanez L, Potau, N, Enriquez, G et al. (2003) Hypergonadotropinemia with reduced uterine and ovarian size in women born small-for-gestational-age. Hum Reprod 18: 1565–1569

    Article  PubMed  Google Scholar 

  26. Ibanez L, Ong K, Valls C, Marcos MV, Dunger DB, deZegher F (2006) Metformin treatment to prevent early puberty in girls with precocious pubarche. J Clin Endocrinol Metab 91: 2888–2891

    Article  PubMed  Google Scholar 

  27. Jaquet D, Leger J, Chevenne D et al. (1999) Intrauterine growth retardation predisposes to insulin resistance but not to hyperandrogenism in young women. J Clin Endocrinol Metab 84: 3945–3949

    Article  PubMed  Google Scholar 

  28. Koziel S, Jankowska EA (2002) Effect of low versus normal birthweight on menarche in 14-year-old Polish girls. J Paediatr Child Health 38: 268–71

    Article  PubMed  Google Scholar 

  29. Lazar L, Pollak U, Kalter-Leibovici O et al. (2003) Pubertal course of persistently short children born small for gestational age (SGA) compared with idiopathic short children born appropriate for gestational age (AGA) Eur J Endocrinol. 149: 425–32

    Google Scholar 

  30. Lumey LH, Stein AD (1997) In utero exposure to famine and subsequent fertility: the dutch famine birth cohort study. Am J Public Health 87: 1962–1966

    PubMed  Google Scholar 

  31. MacLaughlin DT, Donahoe PK (2004) Sex determination and differentiation. N Engl J Med 350: 367–378

    PubMed  Google Scholar 

  32. Michels KB, Xue F (2006) Role of birthweight in the etiology of breast cancer. Int J Cancer 119: 2007–2025

    Article  PubMed  Google Scholar 

  33. Mittelbach D (2006) Zeitpunkt des Menarcheeintritts in Abhängigkeit vom körperlichen Entwicklungsstand und ausgewählten sozialen Faktoren. Dissertation, Universität Jena

  34. Persson I, Ahlsson F, Ewald U et al. (1999) Influence of perinatal factors on the onset of puberty in boys and girls: implications for interpretation of link with risk of long term diseases. Am J Epidemiol 150: 747–755

    PubMed  Google Scholar 

  35. Robinson JE, Forsdike RA, Taylor JA (1999) In utero exposure of female lambs to testosterone reduces the sensitivity of the gonadotropin releasing hormone neuronal network to inhibition by progesterone. Endocrinology 140: 5797–5805

    Article  PubMed  Google Scholar 

  36. Sadrzadeh S, Klip WA, Broekmans FJ et al.; OMEGA Project group (2003) Birth weight and age at menarche in patients with polycystic ovary syndrome or diminished ovarian reserve, in a retrospective cohort. Hum Reprod. 18: 2225–2230

    Google Scholar 

  37. Sir-Petermann T, Maliqueo M, Angel B et al. (2002) Maternal serum androgens in pregnant women with polycystic ovarian syndrome: possible implications in prenatal androgenization. Hum Reprod 17: 2573–2579

    Article  PubMed  Google Scholar 

  38. Sloboda DM, Hart R, Doherty D, Penell CE, Hickey M (2007) Age at menarche: influences of prenatal and postnatal growth. J Clin Endocrinol Metab 92: 46–50

    Article  PubMed  Google Scholar 

  39. Steckler T, Wang J, Bartol F et al. (2005) Fetal programming: prenatal testosterone treatment causes intrauterine growth retardation, reduces ovarian reserve and increase ovarian follicular recruitment. Endocrinology 146: 3185–3193

    Article  PubMed  Google Scholar 

  40. Thoumsin HJ, Alsat E, Cedard L (1982) In vitro aromatization of androgens into estrogens in placental insufficiency. Gynecol Obstet Invest 13: 37–43

    PubMed  Google Scholar 

  41. Völkl T, Simm D, Beier C, Dörr HG (2006) Hyperplasia due to 21-hydroxylase deficiency obesity among children and adolescents with classic congenital adrenal. Pediatrics 117: 98–105

    Article  Google Scholar 

  42. Xita N, Tsatsoulis A (2006) Review: fetal programming of polycystic ovary syndrome by androgen excess: evidence from experimental, clinical, and genetic association studies. J Clin Endocrinol Metab 91(5): 1660–1666

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekkehard Schleußner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schleußner, E. Fetale Programmierung der gonadalen Reifung. Gynäkologe 40, 272–278 (2007). https://doi.org/10.1007/s00129-007-1975-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00129-007-1975-x

Schlüsselworte

Key words

Navigation