Skip to main content
Log in

Epidemiologie und Ursachen der Parkinson-Erkrankung

Epidemiology and causes of Parkinson’s disease

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Die Parkinson-Erkrankung ist die zweithäufigste neurodegenerative Erkrankung, die mit zunehmender Alterung der Industriegesellschaften eine wachsende sozioökonomische Relevanz bekommt. Ein kleiner Teil der unterschiedlichen Erkrankungsformen (<5 %) ist monogen, d. h. durch Mutationen in einzelnen Genen, bedingt. Nach heutigem Stand sind für die klinisch klassische Parkinson-Form drei autosomal-dominant (SNCA, LRRK2, VPS35) und drei autosomal-rezessiv wirkende kausale Gene (Parkin, PINK1, DJ-1) bekannt. Daneben existiert eine Vielzahl von Genen, die für atypische Parkinson-Formen verantwortlich sind. Der idiopathische M. Parkinson hingegen ist multifaktoriell bedingt. Genomweite Assoziationsstudien haben für diese Parkinson-Form insgesamt 26 Genorte etabliert. Für die meisten dieser Genorte sind die der Assoziation zugrunde liegenden funktionellen genetischen Varianten noch nicht identifiziert und die entsprechenden Pathomechanismen noch nicht verstanden. Des Weiteren gibt es eine Reihe mit der idiopathischen Parkinson-Erkrankung assoziierter Umwelt- und Lebensstilfaktoren. Als genuine Risikofaktoren können eine Exposition zu Pestiziden und möglicherweise eine positive Anamnese für Kopftraumata angesehen werden. Andere mit der Parkinson-Erkrankung assoziierte Faktoren wie etwa Rauchen, Kaffee- und Alkoholkonsum stellen möglicherweise keine Risikofaktoren dar; die Ursache-Wirkungs-Beziehung ist für viele der Faktoren noch ungeklärt. Ein Patient mit einer positiven Familienanamnese und/oder einem jungen Erkrankungsalter sollte hinsichtlich einer möglicherweise vorliegenden monogenen Krankheitsform genetisch beraten werden. Eine Krankheitsvorhersage für die idiopathische Erkrankungsform aufgrund genetischer und Umwelt-/Lebensstilfaktoren ist hingegen noch nicht möglich und potenzielle genspezifische Therapien befinden sich noch in Entwicklungs- und ersten Testphasen.

Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disease and has a growing socioeconomic impact due to demographic changes in the industrial nations. There are several forms of PD, a fraction of which (<5%) are monogenic, i. e. caused by mutations in single genes. At present, six genes have been established for the clinically classical form of parkinsonism including three autosomal dominantly (SNCA, LRRK2, VPS35) and three autosomal recessively inherited ones (Parkin, PINK1, DJ-1). In addition, there are a plethora of genes causing atypical forms of parkinsonism. In contrast, idiopathic PD is of a multifactorial nature. Genome-wide association studies have established a total of 26 genetic loci for this form of the disease; however, for most of these loci the underlying functional genetic variants have not yet been identified and the respective disease mechanisms remain unresolved. Furthermore, there are a number of environmental and life style factors that are associated with idiopathic PD. Exposure to pesticides and possibly a history of head trauma represent genuine risk factors. Other PD-associated factors, such as smoking and intake of coffee and alcohol may not represent risk factors per se and the cause-effect relationship has not yet been elucidated for most of these factors. A patient with a positive family history and/or an early age of disease onset should undergo counseling with respect to a possible monogenic form of the disease. Disease prediction based on genetic, environmental and life style factors is not yet possible for idiopathic PD and potential gene-specific therapies are currently in the development or early testing phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Ascherio A, Schwarzschild MA (2016) The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol 15(12):1257–1272

    Article  PubMed  Google Scholar 

  2. Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri AR, Zalutsky R (2007) How common are the „common“ neurologic disorders? Neurology 68(5):326–337

    Article  CAS  PubMed  Google Scholar 

  3. Elbaz A, Bower JH, Maraganore DM, McDonnell SK, Peterson BJ, Ahlskog JE et al (2002) Risk tables for parkinsonism and Parkinson’s disease. J Clin Epidemiol 55(1):25–31

    Article  PubMed  Google Scholar 

  4. Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K et al (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68(5):384–386

    Article  CAS  PubMed  Google Scholar 

  5. Saarni SI, Härkänen T, Sintonen H, Suvisaari J, Koskinen S, Aromaa A et al (2006) The impact of 29 chronic conditions on health-related quality of life: a general population survey in Finland using 15D and EQ-5D. Qual Life Res 15(8):1403–1414

    Article  PubMed  Google Scholar 

  6. Lill CM, Roehr JT, McQueen MB, Kavvoura FK, Bagade S, Schjeide B‑MM et al (2012) Comprehensive research synopsis and systematic meta-analyses in Parkinson’s disease genetics: The PDGene database. PLOS Genet 8(3):e1002548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Noyce AJ, Bestwick JP, Silveira-Moriyama L, Hawkes CH, Giovannoni G, Lees AJ et al (2012) Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol 72(6):893–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Volta M, Milnerwood AJ, Farrer MJ (2015) Insights from late-onset familial parkinsonism on the pathogenesis of idiopathic Parkinson’s disease. Lancet Neurol 14(10):1054–1064

    Article  CAS  PubMed  Google Scholar 

  9. Marras C, Lang A, van de Warrenburg BP, Sue C, Tabrizi SJ, Bertram L et al (2016) Nomenclature of Genetic Movement Disorders: Recommendations of the International Parkinson and Movement Disorder Society Task Force. Mov Disord 31(4):436–457

    Article  PubMed  Google Scholar 

  10. Lill CM (2016) Genetics of Parkinson’s disease. Mol Cell Probes 30(6):386–396

    Article  CAS  PubMed  Google Scholar 

  11. Marras C, Lohmann K, Lang A, Klein C (2012) Fixing the broken system of genetic locus symbols: Parkinson disease and dystonia as examples. Neurology 78(13):1016–1024

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lill CM, Mashychev A, Hartmann C, Lohmann K, Marras C, Lang AE et al (2016) Launching the movement disorders society genetic mutation database (MDSGene). Mov Disord 31(5):607–609

    Article  PubMed  Google Scholar 

  13. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047

    Article  CAS  PubMed  Google Scholar 

  14. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J et al (2003) alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841

    Article  CAS  PubMed  Google Scholar 

  15. Paisán-Ruíz C, Jain S, Evans EW, Gilks WP, Simón J, van der Brug M et al (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 44(4):595–600

    Article  PubMed  Google Scholar 

  16. Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S et al (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44(4):601–607

    Article  CAS  PubMed  Google Scholar 

  17. Vilariño-Güell C, Wider C, Ross OA, Dachsel JC, Kachergus JM, Lincoln SJ et al (2011) VPS35 mutations in Parkinson disease. Am J Hum Genet 89(1):162–167

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zimprich A, Benet-Pagès A, Struhal W, Graf E, Eck SH, Offman MN et al (2011) A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet 89(1):168–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676):605–608

    Article  CAS  PubMed  Google Scholar 

  20. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MMK, Harvey K, Gispert S et al (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304(5674):1158–1160

    Article  CAS  PubMed  Google Scholar 

  21. Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E et al (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299(5604):256–259

    Article  CAS  PubMed  Google Scholar 

  22. Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M et al (2014) Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 46(9):989–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marttila RJ, Rinne UK (1991) Progression and survival in Parkinson’s disease. Acta Neurol Scand 84(S136):24–28

    Article  Google Scholar 

  24. Kasten M, Klein C (2013) The many faces of alpha-synuclein mutations. Mov Disord 28(6):697–701

    Article  PubMed  Google Scholar 

  25. Healy DG, Falchi M, O’Sullivan SS, Bonifati V, Durr A, Bressman S et al (2008) Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol 7(7):583–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lücking CB, Dürr A, Bonifati V, Vaughan J, De Michele G, Gasser T et al (2000) Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med 342(21):1560–1567

    Article  PubMed  Google Scholar 

  27. Hedrich K, Eskelson C, Wilmot B, Marder K, Harris J, Garrels J et al (2004) Distribution, type, and origin of Parkin mutations: review and case studies. Mov Disord 19(10):1146–1157

    Article  PubMed  Google Scholar 

  28. Grünewald A, Kasten M, Ziegler A, Klein C (2013) Next-generation phenotyping using the parkin example: time to catch up with genetics. JAMA Neurol 70(9):1186–1191

    Article  PubMed  Google Scholar 

  29. Klein C, Djarmati A, Hedrich K, Schäfer N, Scaglione C, Marchese R et al (2005) PINK1, Parkin, and DJ-1 mutations in Italian patients with early-onset parkinsonism. Eur J Hum Genet 13(9):1086–1093

    Article  CAS  PubMed  Google Scholar 

  30. Meiser J, Delcambre S, Wegner A, Jäger C, Ghelfi J, d’Herouel AF et al (2016) Loss of DJ-1 impairs antioxidant response by altered glutamine and serine metabolism. Neurobiol Dis 89:112–125

    Article  CAS  PubMed  Google Scholar 

  31. Krebs CE, Karkheiran S, Powell JC, Cao M, Makarov V, Darvish H et al (2013) The Sac1 domain of SYNJ1 identified mutated in a family with early-onset progressive Parkinsonism with generalized seizures. Hum Mutat 34(9):1200–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Funayama M, Ohe K, Amo T, Furuya N, Yamaguchi J, Saiki S et al (2015) CHCHD2 mutations in autosomal dominant late-onset Parkinson’s disease: a genome-wide linkage and sequencing study. Lancet Neurol 14(3):274–282

    Article  CAS  PubMed  Google Scholar 

  33. Deng H‑X, Shi Y, Yang Y, Ahmeti KB, Miller N, Huang C et al (2016) Identification of TMEM230 mutations in familial Parkinson’s disease. Nat Genet 48(7):733–739

    Article  CAS  PubMed  Google Scholar 

  34. Lesage S, Drouet V, Majounie E, Deramecourt V, Jacoupy M, Nicolas A et al (2016) Loss of VPS13C function in autosomal-recessive Parkinsonism causes mitochondrial dysfunction and increases PINK1/Parkin-dependent mitophagy. Am J Hum Genet 98(3):500–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wilson GR, Sim JCH, McLean C, Giannandrea M, Galea CA, Riseley JR et al (2014) Mutations in RAB39B cause X‑linked intellectual disability and early-onset Parkinson disease with α‑synuclein pathology. Am J Hum Genet 95(6):729–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lambert J‑C, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45(12):1452–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sawcer S (2010) Bayes factors in complex genetics. Eur J Hum Genet 18(7):746–750

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lenz TL, Deutsch AJ, Han B, Hu X, Okada Y, Eyre S et al (2015) Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nat Genet 47(9):1085–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schrag A, Horsfall L, Walters K, Noyce A, Petersen I (2015) Prediagnostic presentations of Parkinson’s disease in primary care: a case-control study. Lancet Neurol 14(1):57–64

    Article  PubMed  Google Scholar 

  40. Srinivasan R, Henley BM, Henderson BJ, Indersmitten T, Cohen BN, Kim CH et al (2016) Smoking-relevant nicotine concentration attenuates the unfolded protein response in dopaminergic neurons. J Neurosci 36(1):65–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Toulorge D, Guerreiro S, Hild A, Maskos U, Hirsch EC, Michel PP (2011) Neuroprotection of midbrain dopamine neurons by nicotine is gated by cytoplasmic Ca2. FASEB J 25(8):2563–2573

    Article  CAS  PubMed  Google Scholar 

  42. Chen X, Lan X, Roche I, Liu R, Geiger JD (2008) Caffeine protects against MPTP-induced blood-brain barrier dysfunction in mouse striatum. J Neurochem 107(4):1147–1157

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Schwarzschild MA, Xu K, Oztas E, Petzer JP, Castagnoli K, Castagnoli N et al (2003) Neuroprotection by caffeine and more specific A2A receptor antagonists in animal models of Parkinson’s disease. Neurology 61(11 Suppl 6):S55–61

    Article  CAS  PubMed  Google Scholar 

  44. Ritz B, Lee P‑C, Lassen CF, Arah OA (2014) Parkinson disease and smoking revisited: ease of quitting is an early sign of the disease. Neurology 83(16):1396–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tarazi A, Tator CH, Tartaglia MC (2016) Chronic traumatic encephalopathy and movement disorders: update. Curr Neurol Neurosci Rep 16(5):46

    Article  PubMed  Google Scholar 

  46. Marras C, Goldman SM (2011) Genetics meets environment: evaluating gene-environment interactions in neurologic diseases. Semin Neurol 31(5):553–561

    Article  PubMed  Google Scholar 

  47. Hamza TH, Chen H, Hill-Burns EM, Rhodes SL, Montimurro J, Kay DM et al (2011) Genome-wide gene-environment study identifies glutamate receptor gene GRIN2A as a Parkinson’s disease modifier gene via interaction with coffee. PLOS Genet 7(8):e1002237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ahmed I, Lee P‑C, Lill CM, Searles Nielsen S, Artaud F, Gallagher LG et al (2014) Lack of replication of the GRIN2A-by-coffee interaction in Parkinson disease. PLOS Genet 10(11):e1004788

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hill-Burns EM, Singh N, Ganguly P, Hamza TH, Montimurro J, Kay DM et al (2013) A genetic basis for the variable effect of smoking/nicotine on Parkinson’s disease. Pharmacogenomics J 13(6):530–537

    Article  CAS  PubMed  Google Scholar 

  50. Biernacka JM, Chung SJ, Armasu SM, Anderson KS, Lill CM, Bertram L et al (2016) Genome-wide gene-environment interaction analysis of pesticide exposure and risk of Parkinson’s disease. Parkinsonism Relat Disord 32:25–30

    Article  PubMed  Google Scholar 

  51. Lill CM, Klein C Chapter 1: The Neurogenetics of Parkinson’s disease and Putative Links to Other Neurodegenerative Disorders. Parkinson’s Disease. Elsevier, in press.

Download references

Danksagung

Unser Dank gilt allen Mitarbeitern und Kooperationspartnern, die zur Erstellung und Aktualisierung der PDGene- und MDSGene-Datenbanken beigetragen haben. C.M. Lill erhält Förderungen der International Parkinson and Movement Disorder Society (MDS), der Deutschen Forschungsgemeinschaft (FOR2488/1, GZ LI 2654/2-1), der Possehl-Stiftung, der Renate-Maaß-Stiftung und der Universität zu Lübeck (Mittel der Sektion Medizin, J21-2016). C. Klein wird von der DFG (FOR2488/1), der MDS und der Hermann und Lilly Schilling-Stiftung gefördert.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Klein.

Ethics declarations

Interessenkonflikt

C. M. Lill gibt an, dass kein Interessenkonflikt besteht. C. Klein ist als medizinische Beraterin bei Centogene tätig.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lill, C.M., Klein, C. Epidemiologie und Ursachen der Parkinson-Erkrankung. Nervenarzt 88, 345–355 (2017). https://doi.org/10.1007/s00115-017-0288-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-017-0288-0

Schlüsselwörter

Keywords

Navigation