Skip to main content
Log in

„Beyond antibiotic therapy“ – Zukünftige antiinfektiöse Strategien – Update 2017

Beyond antibiotic therapy – Future antiinfective strategies – Update 2017

  • Leitthema
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die wichtigsten Säulen der Therapie von „surgical site infections“ (SSI) sind heute die chirurgische Sanierung und die lokale bzw. systemische Antibiotikatherapie. Dennoch ist v. a. infolge der zunehmenden Antibiotikaresistenzen das Interesse für mögliche Ergänzungen der Therapie von großer Bedeutung für die zukünftige Unfallchirurgie und Orthopädie.

Methode

Vor dem Hintergrund eigener experimenteller bzw. klinischer Erfahrungen und auf der Basis der aktuellen Literatur wurden mögliche, zukünftig ggf. wichtige antiinfektiöse Strategien erarbeitet.

Ergebnisse/Schlussfolgerungen

Bakteriophagen, vor ca. einem Jahrhundert entdeckt und klinisch verwendet, werden seit ca. einem Jahrzehnt auch im westeuropäischen Raum eingesetzt, derzeit v. a. bei Brandverletzten. Es ist vorstellbar, dass Phagenpräparate angesichts der zunehmenden Antibiotikamultiresistenz von hoher Bedeutung sein werden. Sie werden jedoch nicht zu einem reinen Ersatz für Antibiotika werden. Vielmehr wird es zielführend sein, eine Kombination von Bakteriophagen und Antibiotika als interagierende Gesamttherapie einzusetzen. Ebenso nimmt die klinische Bedeutung antimikrobieller Peptide (AMPs) zu. Bislang wird vorwiegend experimentell am möglichen Einsatz von AMPs gearbeitet. Einzelne AMPs sind jedoch bereits in der Therapie etabliert (Colistin). Weitere diagnostische und therapeutische Maßnahmen werden sich durch den möglichen Einsatz der photodynamischen Therapie, der UV-Licht-Applikation und durch die differenzierte Analyse des Genoms sowie der individuellen Stoffwechsellage (Metabolom) von Erregerzelle und Patientengewebe ergeben.

Abstract

Background

The key elements in the therapy of surgical site infections (SSI) are surgical debridement and local and systemic antibiotic therapy; however, due to increasing antibiotic resistance, the development of additional therapeutic measures is of great interest for future trauma and orthopedic surgery.

Method

Against the background of our own experimental and clinical experiences and on the basis of the current literature, possible future anti-infective strategies were elaborated.

Results/conclusions

Bacteriophages were discovered and clinically implemented approximately one century ago and have been used in Western Europe for about one decade. They are currently used mainly in patients with burn injuries. It is likely that bacteriophages will become of great importance in view of the increasing antibiotic multi-drug resistance; however, they will probably not entirely replace antibiotic drugs. A combined use of bacteriophages and antibiotics is likely to be a more reasonable efficient therapy. In addition, the clinical importance of antimicrobial peptides (AMP) also increases. Up to now the possible use of AMPs is still experimental; however, individual AMPs are already established in the routine therapy (e. g. colistin). Further diagnostic and therapeutic measures may include photodynamic therapy, ultraviolet (UV) light application and differentiated genome analysis as well as the individual metabolism situation (metabolomics) of the pathogen cell and the patient tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM (2011) Phage treatment of human infections. Bacteriophage 1(2):66–85

    Article  PubMed  PubMed Central  Google Scholar 

  2. Al-Ahmad A, Walankiewicz A, Hellwig E, Follo M, Tennert C, Wittmer A et al (2016) Photoinactivation using visible light plus water-filtered infrared-A (vis+wIRA) and chlorine e6 (Ce6) eradicates planktonic periodontal pathogens and subgingival biofilms. Front Microbiol 7:1900

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aleem NA, Aslam M, Zahid MF, Rahman AJ, Rehman FU (2013) Treatment of burn wound infection using ultraviolet light: a case report. J Am Coll Clin Wound Spec 5(1):19–22

    Article  PubMed  Google Scholar 

  4. Andersson M, Boman A, Boman HG (2003) Ascaris nematodes from pig and human make three antibacterial peptides: isolation of cecropin P1 and two ASABF peptides. Cell Mol Life Sci 60(3):599–606

    Article  CAS  PubMed  Google Scholar 

  5. Andes D, Craig W, Nielsen LA, Kristensen HH (2009) In vivo pharmacodynamic characterization of a novel plectasin antibiotic, NZ2114, in a murine infection model. Antimicrob Agents Chemother 53(7):3003–3009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals (Basel) 6(12):1543–1575

    Article  Google Scholar 

  7. Clokie MR, Millard AD, Letarov AV, Heaphy S (2011) Phages in nature. Bacteriophage 1(1):31–45

    Article  PubMed  PubMed Central  Google Scholar 

  8. d’Herelle F (1925) Essai de traitement de la peste bubonique par le bacteriophage. Press Médicale 33:1393–1394

    Google Scholar 

  9. d’Herelle F (1928) Le cholera asiatique. Press Méd 61:961–964

    Google Scholar 

  10. Dai T, Tegos GP, Zhiyentayev T, Mylonakis E, Hamblin MR (2010) Photodynamic therapy for methicillin-resistant Staphylococcus aureus infection in a mouse skin abrasion model. Lasers Surg Med 42(1):38–44

    Article  PubMed  PubMed Central  Google Scholar 

  11. Daptomycin 98-01 and 99-01 Investigators., Arbeit RD, Maki D, Tally FP, Campanaro E, Eisenstein BI et al (2004) The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin Infect Dis 38(12):1673–1681

    Article  Google Scholar 

  12. Diamond G, Beckloff N, Weinberg A, Kisich KO (2009) The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 15(21):2377–2392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Freire F, Ferraresi C, Jorge AO, Hamblin MR (2016) Photodynamic therapy of oral Candida infection in a mouse model. J Photochem Photobiol B 159:161–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Friman VP, Soanes-Brown D, Sierocinski P, Molin S, Johansen HK, Merabishvili M et al (2016) Pre-adapting parasitic phages to a pathogen leads to increased pathogen clearance and lowered resistance evolution with pseudomonas aeruginosa cystic fibrosis bacterial isolates. J Evol Biol 29(1):188–198

    Article  PubMed  Google Scholar 

  15. Fu W, Forster T, Mayer O, Curtin JJ, Lehman SM, Donlan RM (2010) Bacteriophage cocktail for the prevention of biofilm formation by pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob Agents Chemother 54(1):397–404

    Article  CAS  PubMed  Google Scholar 

  16. Gupta A, Bansal N, Houston B (2012) Metabolomics of urinary tract infection: a new uroscope in town. Expert Rev Mol Diagn 12(4):361–369

    Article  CAS  PubMed  Google Scholar 

  17. Gupta S, Sharma AK, Jaiswal SK, Sharma VK (2016) Prediction of biofilm inhibiting peptides: an in silico approach. Front Microbiol 7:949

    PubMed  PubMed Central  Google Scholar 

  18. Habets MG, Brockhurst MA (2012) Therapeutic antimicrobial peptides may compromise natural immunity. Biol Lett 8(3):416–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hall KK, Giannetta ET, Getchell-White SI, Durbin LJ, Farr BM (2003) Ultraviolet light disinfection of hospital water for preventing nosocomial Legionella infection: a 13-year follow-up. Infect Control Hosp Epidemiol 24(8):580–583

    Article  PubMed  Google Scholar 

  20. Hashimoto MC, Prates RA, Kato IT, Nunez SC, Courrol LC, Ribeiro MS (2012) Antimicrobial photodynamic therapy on drug-resistant pseudomonas aeruginosa-induced infection. An in vivo study. Photochem Photobiol 88(3):590–595

    Article  CAS  PubMed  Google Scholar 

  21. Häusler T (2006) Viruses vs. superbugs: a solution to the antibiotics crisis ? Palgrave Macmillan, Basingstoke

    Book  Google Scholar 

  22. Housby JN, Mann NH (2009) Phage therapy. Drug Discov Today 14(11–12):536–540

    Article  CAS  PubMed  Google Scholar 

  23. Kaur S, Harjai K, Chhibber S (2014) Bacteriophage mediated killing of staphylococcus aureus in vitro on orthopaedic K wires in presence of linezolid prevents implant colonization. PLOS ONE 9(3):e90411

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kazemzadeh-Narbat M, Kindrachuk J, Duan K, Jenssen H, Hancock RE, Wang R (2010) Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections. Biomaterials 31(36):9519–9526

    Article  CAS  PubMed  Google Scholar 

  25. Kazemzadeh-Narbat M, Lai BF, Ding C, Kizhakkedathu JN, Hancock RE, Wang R (2013) Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials 34(24):5969–5977

    Article  CAS  PubMed  Google Scholar 

  26. Kutateladze M, Adamia R (2010) Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol 28(12):591–595

    Article  CAS  PubMed  Google Scholar 

  27. Lam CW, Law CY, Sze KH, To KK (2015) Quantitative metabolomics of urine for rapid etiological diagnosis of urinary tract infection: evaluation of a microbial-mammalian co-metabolite as a diagnostic biomarker. Clin Chim Acta 438:24–28

    Article  CAS  PubMed  Google Scholar 

  28. Lang G, Kehr P, Mathevon H, Clavert JM, Sejourne P, Pointu J (1979) Bacteriophage therapy of septic complications of orthopaedic surgery (author’s transl). Rev Chir Orthop Reparatrice Appar Mot 65(1):33–37

    CAS  PubMed  Google Scholar 

  29. Laverty G, Gorman SP, Gilmore BF (2011) The potential of antimicrobial peptides as biocides. Int J Mol Sci 12(10):6566–6596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee JY, Boman A, Sun CX, Andersson M, Jornvall H, Mutt V et al (1989) Antibacterial peptides from pig intestine: isolation of a mammalian cecropin. Proc Natl Acad Sci U S A 86(23):9159–9162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Levin J, Riley LS, Parrish C, English D, Ahn S (2013) The effect of portable pulsed xenon ultraviolet light after terminal cleaning on hospital-associated Clostridium difficile infection in a community hospital. Am J Infect Control 41(8):746–748

    Article  PubMed  Google Scholar 

  32. Loc-Carrillo C, Abedon ST (2011) Pros and cons of phage therapy. Bacteriophage 1(2):111–114

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ma M, Kazemzadeh-Narbat M, Hui Y, Lu S, Ding C, Chen DD et al (2012) Local delivery of antimicrobial peptides using self-organized TiO2 nanotube arrays for peri-implant infections. J Biomed Mater Res A 100(2):278–285

    Article  PubMed  Google Scholar 

  34. Maisetta G, Grassi L, Di Luca M, Bombardelli S, Medici C, Brancatisano FL et al (2016) Anti-biofilm properties of the antimicrobial peptide temporin 1Tb and its ability, in combination with EDTA, to eradicate Staphylococcus epidermidis biofilms on silicone catheters. Biofouling 32(7):787–800

    Article  CAS  PubMed  Google Scholar 

  35. Marr AK, Gooderham WJ, Hancock RE (2006) Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol 6(5):468–472

    Article  CAS  PubMed  Google Scholar 

  36. Merabishvili M, Pirnay JP, Verbeken G, Chanishvili N, Tediashvili M, Lashkhi N et al (2009) Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLOS ONE 4(3):e4944

    Article  PubMed  PubMed Central  Google Scholar 

  37. Meurice E, Rguiti E, Brutel A, Hornez JC, Leriche A, Descamps M et al (2012) New antibacterial microporous CaP materials loaded with phages for prophylactic treatment in bone surgery. J Mater Sci Mater Med 23(10):2445–2452

    Article  CAS  PubMed  Google Scholar 

  38. Napier BA, Band V, Burd EM, Weiss DS (2014) Colistin heteroresistance in enterobacter cloacae is associated with cross-resistance to the host antimicrobial lysozyme. Antimicrob Agents Chemother 58(9):5594–5597

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nawrocki KL, Crispell EK, McBride SM (2014) Antimicrobial peptide resistance mechanisms of gram-positive bacteria. Antibiotics (Basel) 3(4):461–492

    Article  CAS  Google Scholar 

  40. Pasupuleti M, Schmidtchen A, Malmsten M (2012) Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol 32(2):143–171

    Article  CAS  PubMed  Google Scholar 

  41. Peschel A, Jack RW, Otto M, Collins LV, Staubitz P, Nicholson G et al (2001) Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l‑lysine. J Exp Med 193(9):1067–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reddy KVR, Yedery RD (2004) Aranha C Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24(6):536–547

    Article  CAS  PubMed  Google Scholar 

  43. Rhoads DD, Wolcott RD, Kuskowski MA, Wolcott BM, Ward LS, Sulakvelidze A (2009) Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. J Wound Care 18(6):237–238 (240–233)

    Article  CAS  PubMed  Google Scholar 

  44. Rhode C, Sikorski J (2011) Bakeriophagen: Vielfalt, Anwendung und ihre Bedeutung für die Wissenschaft vom Leben. Naturwiss Rundsch 64(1):5–14

    Google Scholar 

  45. Richtlinie_2001-83 (2001) http://www.upc.documents.eu.com/PDFs/2001-11-06_Richtlinie_2001-83-EG_Schaffung_Gemainschaftskodexes_Humanarzneimittel.pdf. Zugegriffen: 17. Mai 2017

  46. Rose T, Verbeken G, Vos DD, Merabishvili M, Vaneechoutte M, Lavigne R et al (2014) Experimental phage therapy of burn wound infection: difficult first steps. Int J Burns Trauma 4(2):66–73

    PubMed  PubMed Central  Google Scholar 

  47. Schröder J‑M (2010) Antimikrobielle Peptide – Körpereigene Antibiotika schützen Haut und Schleimhaut [Journal]. Pharmazeutische Zeitung online. http://www.pharmazeutische-zeitung.de/index.php?id=33508. Zugegriffen: 17. Mai 2017

    Google Scholar 

  48. Schröder JM (2010) Pharmazeutische Zeitung online 16. http://www.pharmazeutische-zeitung.de/index.php?id=33508. Zugegriffen: 17. Mai 2017

    Google Scholar 

  49. Simonetti O, Cirioni O, Orlando F, Alongi C, Lucarini G, Silvestri C et al (2011) Effectiveness of antimicrobial photodynamic therapy with a single treatment of RLP068/Cl in an experimental model of staphylococcus aureus wound infection. Br J Dermatol 164(5):987–995

    Article  CAS  PubMed  Google Scholar 

  50. Stauss-Grabo M, Atiye S, Le T, Kretschmar M (2014) Decade-long use of the antimicrobial peptide combination tyrothricin does not pose a major risk of acquired resistance with gram-positive bacteria and Candida spp. Pharmazie 69(11):838–841

    CAS  PubMed  Google Scholar 

  51. Sulakvelidze A, Alavidze Z, Morris JG Jr. (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45(3):649–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tait K, Skillman LC, Sutherland IW (2002) The efficacy of bacteriophage as a method of biofilm eradication. Biofouling 18:305–311

    Article  Google Scholar 

  53. Tsulukidze A (1941) Experience of the use of bacteriophages in conditions of war trauma. Gruzmedgiz, Tbilisi

    Google Scholar 

  54. Vianna PG, Dale Jr. CR, Simmons S, Stibich M, Licitra CM (2016) Impact of pulsed xenon ultraviolet light on hospital-acquired infection rates in a community hospital. Am J Infect Control 44(3):299–303

  55. Waghu FH, Gopi L, Barai RS, Ramteke P, Nizami B, Idicula-Thomas S (2014) CAMP: collection of sequences and structures of antimicrobial peptides. Nucleic Acids Res 42(Database issue):D1154–D1158

    Article  CAS  PubMed  Google Scholar 

  56. Walker J, Sharp R, Hughes G, Werthén M, Lehman S, Morales S, Harper DR, Parracho HMRT (2014) Bacteriophages and Biofilms. Antibiotics (Basel) 3(3):270–284

    Article  Google Scholar 

  57. Wang C, Huang S, Zhu T, Sun X, Zou Y, Wang Y (2014) Efficacy of photodynamic antimicrobial therapy for wound flora and wound healing of pressure sore with pathogen infection. Zhonghua Yi Xue Za Zhi 94(31):2455–2459

    PubMed  Google Scholar 

  58. Wittebole X, De Roock S, Opal SM (2014) A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 5(1):226–235

    Article  PubMed  Google Scholar 

  59. Xiong M, Chen M, Zhang J (2016) Rational evolution of antimicrobial peptides containing unnatural amino acids to combat burn wound infections. Chem Biol Drug Des 88(3):404–410

    Article  CAS  PubMed  Google Scholar 

  60. Xu Y, Maltesen RG, Larsen LH, Schonheyder HC, Le VQ, Nielsen JL et al (2016) In vivo gene expression in a Staphylococcus aureus prosthetic joint infection characterized by RNA sequencing and metabolomics: a pilot study. BMC Microbiol 16:80

    Article  PubMed  PubMed Central  Google Scholar 

  61. Yilmaz C, Colak M, Yilmaz BC, Ersoz G, Kutateladze M, Gozlugol M (2013) Bacteriophage therapy in implant-related infections: an experimental study. J Bone Joint Surg Am 95(2):117–125

    Article  PubMed  Google Scholar 

  62. Zapotoczna M, Forde E, Hogan S, Humphreys H, O’Gara JP, Fitzgerald-Hughes D et al (2017) Eradication of staphylococcus aureus biofilm infections using synthetic antimicrobial peptides. J Infect Dis 215(6):975–983

    Article  PubMed  Google Scholar 

  63. Zheng W, Antonini JM, Lin YC, Roberts JR, Kashon ML, Castranova V et al (2015) Cardiovascular effects in rats after intratracheal instillation of metal welding particles. Inhal Toxicol 27(1):45–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhong G, Cheng J, Liang ZC, Xu L, Lou W, Bao C et al (2017) Short synthetic beta-sheet antimicrobial peptides for the treatment of multidrug-resistant pseudomonas aeruginosa burn wound infections. Adv Healthc Mater. doi:10.1002/adhm.201601134

    Google Scholar 

  65. Zimmerli W, Trampuz A, Ochsner PE (2004) Prosthetic-joint infections. N Engl J Med 351(16):1645–1654

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Willy MD.

Ethics declarations

Interessenkonflikt

D. Vogt, S. Sperling, T. Tkhilaishvili, A. Trampuz, J.-P. Pirnay, und C. Willy geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

A. Trampuz, Berlin

C. Willy, Berlin

Die Autoren D. Vogt und S. Sperling teilen sich die Erstautorenschaft.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogt, D., Sperling, S., Tkhilaishvili, T. et al. „Beyond antibiotic therapy“ – Zukünftige antiinfektiöse Strategien – Update 2017. Unfallchirurg 120, 573–584 (2017). https://doi.org/10.1007/s00113-017-0374-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-017-0374-6

Schlüsselwörter

Keywords

Navigation