Skip to main content
Log in

Intensivmedizinische Kriterien der Operabilität

Criteria for secondary operations in patients with multiple injuries

  • Originalien
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Operabilität wird im Wesentlichen von der Wechselwirkung zwischen der Belastbarkeit des Patienten und der Größe der Belastung durch die Operation selbst bestimmt. Ein 3. wichtiger Faktor ist der potentielle Nutzen eines Eingriffs bzw. die mögliche Folge einer Unterlassung der Operation.

Ergebnisse

Größere sekundäre Operationen innerhalb der ersten 2–3 Tage nach dem Trauma scheinen ein deutlich größeres Operationsrisiko aufzuweisen, insbesondere bei einer eingeschränkten Lungenfunktion (pO2/FiO2-Quotient <280 mmHg) und einer starken posttraumatischen inflammatorischen Reaktion. Solche Operationen sollten bei dieser Patientengruppe auf einen späteren Zeitpunkt verschoben werden. Auch Operationen ab dem 4. Tag bedürfen einer individuellen Abwägung des günstigsten Zeitpunktes. Hierbei scheinen ein pO2/FiO2-Quotient >280 mmHg, eine stabile Kreislaufsituation, eine Thrombozytenzahl >100.000–150.000/μl und steigend, globale Gerinnungstests im Referenzbereich, eine moderate Inflammation (C-reaktives Protein, Interleukin-6), eine ausgeglichene Flüssigkeitsbilanz und bei Schädel-Hirn-Trauma ein Hirndruck <15–20 mmHg oder fehlende Hirndruckzeichen im CCT ein niedriges Operationsrisiko anzuzeigen. In welchem Maße die Leberfunktion, das PEEP-Niveau, der Katecholaminbedarf und andere Faktoren in Risikoabschätzung eingehen, kann nicht sicher beurteilt werden.

Schlussfolgerung

Die pathophysiologischen Abläufe nach akzidentellem Trauma zeigen einen phasischen Verlauf der immunmodulatorischen Reaktion. Ein operatives Trauma durch eine sekundäre Operation stellt hierbei eine zusätzliche Noxe dar. Je nach dem, in welcher Phase der posttraumatischen Inflammation dieser „second hit“ einwirkt, können mehr oder weniger starke Störungen der Homöostase bis hin zum postoperativen Multiorganversagen auftreten. Ob dies eintritt hängt zum einen von der Größe der Operation statt; hier führen kleinere Eingriffe auch zu geringeren systemischen Effekten auf den Organismus und sind bezüglich der Operabilität weniger kritisch.

Abstract

Background

Operability is mainly determined by the interaction between the magnitude of an operation and the patient’s tolerance for the procedure. A further factor is the benefit gained by performing the procedure versus the squealae caused by its omission.

Results

Major operations within the first 3 days after trauma appear to have an increased risk, particularly if they are performed during impaired respiratory function (pO2/FiO2 ratio <280 mmHg) or increased inflammatory status. Such interventions are recommended to be postponed until a later time. Surgical interventions after day 3 require an individual decision with respect to the timing of the operation. Criteria that are of value in this decision comprise a pO2/FiO2 ratio above 280 mmHg, a stable circulation, a platelet count above 100.000 to 150.000/μl, normal global coagulation tests, only moderate systemic inflammation as indicated by C-reactive protein or interleukin-6 levels, a normal fluid balance and in case of traumatic brain injury there should be no signs of increased intracranial pressure. Whether liver function, level of PEEP, catecholamine therapy and other factors will influence operability remains to be elucidated.

Conclusion

The pathophysiological consequences of accidental trauma show a phasic course with respect to the immunomodulatory response. An operative trauma inflicted by a secondary surgical intervention contributes an additional burden. Depending on the inflammatory phase during which this secondary hit is inflicted there may be a disturbance of homoeostasis that may even lead to multiple organ failure. Whether this happens can depend on type and magnitude of the surgical intervention. Minor operations result in smaller systemic effects and will be less critical with respect to operability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Aller MA, Arias JL, Nava MP, Arias J (2004) Posttraumatic inflammation is a complex response based on the pathological expression of the nervous, immune, and endocrine functional systems. Exp Biol Med (Maywood) 229: 170–181

    CAS  Google Scholar 

  2. Bone RC (1996) Sir Isaac Newton, sepsis, SIRS, and CARS. Crit Care Med 24: 1125–1128

    Article  PubMed  CAS  Google Scholar 

  3. Cuthbertson D (1932) Observations on the disturbance of metabolism produced by injury to the limbs. Q J Med 25: 233–246

    Google Scholar 

  4. Cuthbertson D (1942) Post-shock metabolic response. Lancet 1: 433–437

    Article  Google Scholar 

  5. de Bel E, Goris R (2000) Systemic inflammation after trauma, infection, and cardiopulmonary bypass: Is autodestruction a neccessary evil? In: Baue E, Faist E, Fry D (eds) Multiple organ failure — pathophysiology, prevention, and therapy. Springer, New York Berlin Heidelberg Tokio, pp 71–81

  6. Ertel W, Keel M, Bonaccio M, Steckholzer U, Gallati H, Kenney JS, Trentz O (1995) Release of anti-inflammatory mediators after mechanical trauma correlates with severity of injury and clinical outcome. J Trauma 39: 879–885

    Article  PubMed  CAS  Google Scholar 

  7. Ertel W, Keel M, Marty D, Hoop R, Safret A, Stocker R, Trentz O (1998) Significance of systemic inflammation in 1,278 trauma patients. Unfallchirurg 101: 520–526

    Article  PubMed  CAS  Google Scholar 

  8. Faist E, Baue AE, Dittmer H, Heberer G (1983) Multiple organ failure in polytrauma patients. J Trauma 23: 775–787

    Article  PubMed  CAS  Google Scholar 

  9. Flohe S, Lendemans S, Schade F, Kreuzfelder E, Waydhas C (2004) Influence of surgical intervention in the immune response of severely injured patients. Intens Care Med 30: 96–102

    Article  Google Scholar 

  10. Galle C, De Maertelaer V, Motte S et al. (2000) Early inflammatory response after elective abdominal aortic aneurysm repair: a comparison between endovascular procedure and conventional surgery. J Vasc Surg 32: 234–246

    Article  CAS  PubMed  Google Scholar 

  11. Gebhard F, Pfetsch H, Steinbach G, Strecker W, Kinzl L, Bruckner UB (2000) Is interleukin 6 an early marker of injury severity following major trauma in humans? Arch Surg 135: 291–295

    Article  CAS  PubMed  Google Scholar 

  12. Goldman L, Caldera DL, Nussbaum SR et al. (1977) Multifactorial index of cardiac risk in noncardiac surgical procedures. N Engl J Med 297: 845–850

    Article  PubMed  CAS  Google Scholar 

  13. Lendemans S, Kreuzfelder E, Waydhas C, Nast-Kolb D, Flohe S (2004) Clinical course and prognostic significance of immunological and functional parameters after severe trauma. Unfallchirurg 107: 203–210

    Article  PubMed  CAS  Google Scholar 

  14. Moore FA, Sauaia A, Moore EE, Haenel JB, Burch JM, Lezotte DC (1996) Postinjury multiple organ failure: A bimodal phenomenon. J Trauma 40: 501–510

    Article  PubMed  CAS  Google Scholar 

  15. Mutlu LK, Woiciechowsky C, Bechmann I (2004) Inflammatory response after neurosurgery. Best Pract Res Clin Anaesthesiol 18: 407–424

    Article  CAS  PubMed  Google Scholar 

  16. Napolitano LM, Ferrer T, McCarter RJ Jr, Scalea TM (2000) Systemic inflammatory response syndrome score at admission independently predicts mortality and length of stay in trauma patients. J Trauma 49: 647–652

    Article  PubMed  CAS  Google Scholar 

  17. Nast-Kolb D, Ruchholtz S, Waydhas C, Schmidt B, Taeger G (2005) Damage control orthopaedics. Unfallchirurg (in press)

  18. Nast-Kolb D, Waydhas C, Gippner-Steppert C et al. (1997) Indicators of the posttraumatic inflammatory response correlate with organ failure in patients with multiple injuries. J Trauma 42: 446–454

    Article  PubMed  CAS  Google Scholar 

  19. Nast-Kolb D, Waydhas C, Schweiberer L (1996) Marknagelung beim Polytrauma. Orthopäde 25: 266–273

    CAS  PubMed  Google Scholar 

  20. Offner P, Moore E (2000) Risk factors for MOF and pattern of organ failure following severe trauma. In: Baue E, Faist E, Fry D (eds) Multiple organ failure — pathophysiology, prevention, and therapy. Springer, Berlin Heidelberg New York Tokio, pp 30–43

  21. Pape HC, Schmidt RE, Rice J, van Griensven M, das Gupta R, Krettek C, Tscherne H (2000) Biochemical changes after trauma and skeletal surgery of the lower extremity: quantification of the operative burden. Crit Care Med 28: 3441–3448

    Article  PubMed  CAS  Google Scholar 

  22. Pape HC, van Griensven M, Rice J et al. (2001) Major secondary surgery in blunt trauma patients and perioperative cytokine liberation: determination of the clinical relevance of biochemical markers. J Trauma 50: 989–1000

    Article  PubMed  CAS  Google Scholar 

  23. Regel G, Pohlemann T, Krettek C, Tscherne H (1997) Frakturversorgung beim Polytrauma. Zeitpunkt und Taktik. Unfallchirurg 100: 234–248

    Article  PubMed  CAS  Google Scholar 

  24. Roumen RM, Hendriks T, van der Ven-Jongekrijg J, Nieuwenhuijzen GA, Sauerwein RW, van der Meer JW, Goris RJ (1993) Cytokine patterns in patients after major vascular surgery, hemorrhagic shock, and severe blunt trauma. Relation with subsequent adult respiratory distress syndrome and multiple organ failure. Ann Surg 218: 769–776

    Article  PubMed  CAS  Google Scholar 

  25. Sauaia A, Moore FA, Moore EE, Haenel JB, Read RA (1993) Pneumonia: cause or symptom of postinjury multiple organ failure? Am J Surg 166: 606–610

    Article  CAS  PubMed  Google Scholar 

  26. Savino JA, Del Guercio LR (1985) Preoperative assessment of high-risk surgical patients. Surg Clin North Am 65: 763–791

    PubMed  CAS  Google Scholar 

  27. Scalea TM, Boswell SA, Scott JD, Mitchell KA, Kramer ME, Pollak AN (2000) External fixation as a bridge to intramedullary nailing for patients with multiple injuries and with femur fractures: damage control orthopedics. J Trauma 48: 613–621

    Article  PubMed  CAS  Google Scholar 

  28. Shoemaker WC, Appel PL, Bland R, Hopkins JA, Chang P (1982) Clinical trial of an algorithm for outcome prediction in acute circulatory failure. Crit Care Med 10: 390–397

    Article  CAS  PubMed  Google Scholar 

  29. Sido B, Teklote JR, Hartel M, Friess H, Buchler MW (2004) Inflammatory response after abdominal surgery. Best Pract Res Clin Anaesthesiol 18: 439–454

    Article  CAS  PubMed  Google Scholar 

  30. Taeger G, Ruchholtz S, Waydhas C, Lewan U, Schmidt B, Nast-Kolb d (2005) Damage control orthopedics in multiple injures patients is effective, time saving and safe. J Trauma (in press)

  31. Talmor M, Hydo L, Barie PS (1999) Relationship of systemic inflammatory response syndrome to organ dysfunction, length of stay, and mortality in critical surgical illness: effect of intensive care unit resuscitation. Arch Surg 134: 81–87

    Article  CAS  PubMed  Google Scholar 

  32. Uehara M, Plank LD, Hill GL (1999) Components of energy expenditure in patients with severe sepsis and major trauma: a basis for clinical care. Crit Care Med 27: 1295–1302

    Article  PubMed  CAS  Google Scholar 

  33. Vacanti CJ, VanHouten RJ, Hill RC (1970) A statistical analysis of the relationship of physical status to postoperative mortality in 68,388 cases. Anesth Analg 49: 564–566

    Article  PubMed  CAS  Google Scholar 

  34. Vodinh J, Bonnet F, Touboul C, Lefloch JP, Becquemin JP, Harf A (1989) Risk factors of postoperative pulmonary complications after vascular surgery. Surgery 105: 360–365

    PubMed  CAS  Google Scholar 

  35. Waydhas C, Nast-Kolb D, Jochum M et al. (1992) Inflammatory mediators, infection, sepsis, and multiple organ failure after severe trauma. Arch Surg 127: 460–467

    CAS  PubMed  Google Scholar 

  36. Waydhas C, Nast-Kolb D, Kick M et al. (1995) Postoperative Homöostasestörung nach unterschiedlich großen unfallchirurgischen Eingriffen beim Polytrauma. Unfallchirurg 98: 455–463

    PubMed  CAS  Google Scholar 

  37. Waydhas C, Nast-Kolb D, Kick M et al. (1994) Operationsplanung von sekundären Eingriffen nach Polytrauma. Unfallchirurg 97: 244–249

    PubMed  CAS  Google Scholar 

  38. Waydhas C, Nast-Kolb D, Trupka A et al. (1996) Posttraumatic inflammatory response, secondary operations, and late multiple organ failure. J Trauma 40: 624–631

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Waydhas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waydhas, C., Flohe, S. Intensivmedizinische Kriterien der Operabilität. Unfallchirurg 108, 866–872 (2005). https://doi.org/10.1007/s00113-005-0991-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-005-0991-3

Schlüsselwörter

Keywords

Navigation