Skip to main content
Log in

Körperliche Aktivität und Hirnfunktion

Physical activity and brain function

  • Schwerpunkt
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Körperliche Aktivität hat mittelbare und unmittelbare Auswirkungen auf die Hirnfunktion in Gesundheit und Krankheit. Besonderes Interesse wecken jene Befunde, die belegen, dass körperliches Training kognitive wie nichtkognitive Hirnfunktionen verbessert und präventiv hinsichtlich diverser neuropsychiatrischer Erkrankungen wirkt. Diese kurze Übersicht konzentriert sich auf Sport und körperliche Aktivität bei normaler Hirnfunktion und fasst zusammen, welche Mechanismen den beobachteten Wirkungen zugrunde liegen könnten, welche methodologischen Schwierigkeiten bestehen, welche Beziehung zu Konzepten von Plastizität und neuralen Reserven vorliegen und welche evolutionäre Relevanz der zunächst überraschend erscheinende Befund hat, dass Sport „gut für das Gehirn“ ist.

Abstract

Physical activity has direct and indirect effects on brain function in health and disease. Findings demonstrating that physical activity improves cognitive and non-cognitive functions and is preventive for several neuropsychiatric disorders have attracted particular interest. This short review focuses on sports and physical exercise in normal brain function and summarizes which mechanisms might underlie the observed effects, which methodological problems exist, which relationships exist to concepts of plasticity and neural reserves and what evolutionary relevance the initially surprising finding that physical exercise is good for the brain has.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Aberg MA, Pedersen NL, Toren K et al (2009) Cardiovascular fitness is associated with cognition in young adulthood. Proc Natl Acad Sci U S A 106:20906–20911

    Article  PubMed  CAS  Google Scholar 

  2. Aimone JB, Deng W, Gage FH (2010) Adult neurogenesis: integrating theories and separating functions. Trends Cogn Sci 14:325–337

    Article  PubMed  Google Scholar 

  3. Aimone JB, Wiles J, Gage FH (2006) Potential role for adult neurogenesis in the encoding of time in new memories. Nat Neurosci 9:723–727

    Article  PubMed  CAS  Google Scholar 

  4. Angevaren M, Aufdemkampe G, Verhaar HJ et al (2008) Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev:CD005381

    Google Scholar 

  5. Blech J (2007) Bewegung. Die Kraft, die Krankheiten besiegt und das Leben verlängert. Fischer, Frankfurt

  6. Cerga-Pashoja A, Lowery D, Bhattacharya R et al (2010) Evaluation of exercise on individuals with dementia and their carers: a randomised controlled trial. Trials 11:53

    Article  PubMed  Google Scholar 

  7. Colcombe S, Kramer AF (2003) Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci 14:125–130

    Article  PubMed  Google Scholar 

  8. Dupret D, Revest JM, Koehl M et al (2008) Spatial relational memory requires hippocampal adult neurogenesis. PLoS ONE 3:e1959

    Article  PubMed  Google Scholar 

  9. Erickson KI, Voss MW, Prakash RS et al (2011) Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A 108:3017–3022

    Article  PubMed  CAS  Google Scholar 

  10. Etnier JL, Nowell PM, Landers DM et al (2006) A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Brain Res Rev 52:119–130

    Article  PubMed  Google Scholar 

  11. Fabel K, Wolf SA, Ehninger D et al (2009) Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Front Neurosci. 3:50

    Google Scholar 

  12. Fields D (2005) Wie Erinnerungen haften bleiben. Spektrum der Wissenschaft:62–69

    Google Scholar 

  13. Flicker L, Liu-Ambrose T, Kramer AF (2011) Why so negative about preventing cognitive decline and dementia? The jury has already come to the verdict for physical activity and smoking cessation. Br J Sports Med 45:465–467

    Article  PubMed  Google Scholar 

  14. Forbes D, Forbes S, Morgan DG et al (2008) Physical activity programs for persons with dementia. Cochrane Database Syst Rev:CD006489

    Google Scholar 

  15. Garthe A, Behr J, Kempermann G (2009) Adult-generated hippocampal neurons allow the flexible use of spatially precise learning strategies. PLoS ONE 4:e5464

    Article  PubMed  Google Scholar 

  16. Gates NJ, Valenzuela M, Sachdev PS et al (2011) Study of Mental Activity and Regular Training (SMART) in at risk individuals: a randomised double blind, sham controlled, longitudinal trial. BMC Geriatr 11:19

    Article  PubMed  Google Scholar 

  17. Hillman CH, Erickson KI, Kramer AF (2008) Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci 9:58–65

    Article  PubMed  CAS  Google Scholar 

  18. Huger D, Zieschang T, Schwenk M et al (2009) Designing studies on the effectiveness of physical training in patients with cognitive impairment. Z Gerontol Geriatr 42:11–19

    Article  PubMed  CAS  Google Scholar 

  19. Imayoshi I, Sakamoto M, Ohtsuka T et al (2008) Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 11:1153–1161

    Article  PubMed  CAS  Google Scholar 

  20. Kempermann G (2011) Adult Neurogenesis 2 – Stem cells and neuronal development in the adult brain. Oxford University Press, New York

  21. Kempermann G (2008) The neurogenic reserve hypothesis: what is adult hippocampal neurogenesis good for? Trends Neurosci 31:163–169

    Article  PubMed  CAS  Google Scholar 

  22. Kempermann G (2011) Training für das Denken – Neue Nervenzellen für alte Gehirne. In: Zenner HP, Beck-Sickinger AG et al (Hrsg) Herausforderung Mensch – Energie, Ernährung, Gesundheit. Thieme, Stuttgart, S 209–217

  23. Kempermann G, Fabel K, Ehninger D et al (2010) Why and How Physical Activity Promotes Experience-Induced Brain Plasticity. Front Neurosci 4:189

    Article  PubMed  Google Scholar 

  24. Kronenberg G, Bick-Sander A, Bunk E et al (2006) Physical exercise prevents age-related decline in precursor cell activity in the mouse dentate gyrus. Neurobiol Aging 27:1505–1513

    Article  PubMed  Google Scholar 

  25. Kronenberg G, Reuter K, Steiner B et al (2003) Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J Comp Neurol 467:455–463

    Article  PubMed  Google Scholar 

  26. Leung LS, Shen B, Rajakumar N et al (2003) Cholinergic activity enhances hippocampal long-term potentiation in CA1 during walking in rats. J Neurosci 23:9297–9304

    PubMed  CAS  Google Scholar 

  27. Liersch S, Henze V, Röbl M et al (2011) Forty-five minutes of physical activity at school each day? Curricular promotion of physical activity in grades one to four. J Public Health 19:329–338

    Article  Google Scholar 

  28. Lindenberger U, Burzynska AZ, Nagel IE (2012) Heterogeneity in frontal-lobe aging. In: Stuss DT, Knight RT (eds) Principles of frontal lobe functions. Oxford University Press, New York

  29. Miller DI, Taler V, Davidson PS et al (2012) Measuring the impact of exercise on cognitive aging: methodological issues. Neurobiol Aging 33:622 e629–643

    Article  PubMed  Google Scholar 

  30. Pereira AC, Huddleston DE, Brickman AM et al (2007) An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci U S A 104:5638–5643

    Article  PubMed  CAS  Google Scholar 

  31. Ratey JR Spark (2008) The revolutionary new science of exercise and the brain. Little Brown [Deutsch: „Superfaktor Bewegung“. VAK, Kirchzarten, 2009]

  32. Singh A, Uijtdewilligen L, Twisk JW et al (2012) Physical activity and performance at school: a systematic review of the literature including a methodological quality assessment. Arch Pediatr Adolesc Med 166:49–55

    Article  PubMed  Google Scholar 

  33. Stern Y (2002) What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc 8:448–460

    Article  PubMed  Google Scholar 

  34. Trudeau F, Shephard RJ (2005) Contribution of school programmes to physical activity levels and attitudes in children and adults. Sports Med 35:89–105

    Article  PubMed  Google Scholar 

  35. Van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270

    Article  Google Scholar 

  36. Yaguez L, Shaw KN, Morris R et al (2011) The effects on cognitive functions of a movement-based intervention in patients with Alzheimer’s type dementia: a pilot study. Int J Geriatr Psychiatry 26:173–181

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kempermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kempermann, G. Körperliche Aktivität und Hirnfunktion. Internist 53, 698–704 (2012). https://doi.org/10.1007/s00108-011-2935-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-011-2935-z

Schlüsselwörter

Keywords

Navigation