Skip to main content
Log in

Neue Therapiemöglichkeiten für Arrhythmien durch Katheterablation

New therapy possibilities for arrhythmias using catheter ablation

  • Schwerpunkt: Herzrhythmusstörungen
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Die Hochfrequenzstromablation hat sich in den letzten 20 Jahren zum Standardverfahren bei der Therapie von tachykarden Herzrhythmusstörungen entwickelt. Durch die Kombination mit neuen dreidimensionalen Bildgebungsverfahren steht zusammen mit so genannten Mappingverfahren eine Technik zur Verfügung, die die individuelle Anatomie des Patienten und die elektrophysiologische Information, d. h. den zeitlichen Ablauf der Erregungsfortleitung, darstellen kann. Diese Verfahren sind bei der Behandlung von komplexen Herzrhythmusstörungen, und hier insbesondere bei der Katheterablation von Vorhofflimmern, bedeutsam. Anstelle der aktuell „Punkt für Punkt“ angelegten Ablationslinien werden mittlerweile Ballonkatheterverfahren zur Applikation von Kryothermie, Ultraschall oder Laserenergie als „Single-shot-Technik“ erprobt, um die bei der Hochfrequenzstromablation häufiger auftretenden inkompletten Läsionen zu vermeiden. Schließlich verspricht die Magnetische Navigation als neues Steuerungsverfahren eine „schonendere“ Ablation, die vor allem durch die Reduktion der Strahlenbelastung von Vorteil ist.

Abstract

Radiofrequency current ablation has been developed over the last 20 years to be the standard approach for treating tachycardia by catheter ablation. By combining new 3-D imaging technology (CT and MRI) with 3-D electrophysiologic mapping systems, a new tool has been created to display the cardiac activation sequence of the individual. These technologies are extremely important for the treatment of complex arrhythmias such as the catheter ablation of atrial fibrillation. Instead of the conventional “point by point” linear ablation procedure, balloon catheters have been applied to a circumferential linear lesion in a “single shot” procedure using, for example, cryothermia, ultrasound or laser energy. Finally, magnetic navigation is a new steering tool for performing ablation procedures, leading to reduced exposure to ionizing radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Ahmed J, Sohal S, Malchano ZJ et al. (2005) Three-dimensional analysis of pulmonary venous ostial and antral anatomy: implications for balloon catheter-based pulmonary vein isolation. J Cardiovasc Electrophysiol 17: 251–255

    Article  Google Scholar 

  2. Arentz T, Weber R, Jander N et al. (2005) Pulmonary haemodynamics at rest and during exercise in patients with significant pulmonary vein stenosis after radiofrequency catheter ablation for drug resistant atrial fibrillation. Eur Heart J 26: 1410–1414

    Article  PubMed  Google Scholar 

  3. Bai R, Patel D, Biase LD et al. (2006) Phrenic nerve injury after catheter ablation: should we worry about this complication? J Cardiovasc Electrophysiol: (in print)

  4. Blomstrom-Lundqvist C, Scheinman MM, Aliot EM et al.; European Society of Cardiology Committee, NASPE-Heart Rhythm Society (2003) ACC/AHA/ESC guidelines for the management of patients with supraventricular arrhythmias: executive summary. J Am Coll Cardiol 42: 1493–1531

    Article  PubMed  Google Scholar 

  5. Borggrefe M, Budde T, Podczeck A et al. (1987) High frequency alternating current ablation of an accessory pathway in humans. J Am Coll Cardiol 10: 576–582

    PubMed  Google Scholar 

  6. Cappato R, Calkins H, Chen SA et al. (2005) A worldwide survey on the methods, efficacy and safety of catheter ablation for human atrial fibrillation. Circulation 111: 1100–1105

    Article  PubMed  Google Scholar 

  7. Cummings JE, Pacifico A, Drago JL et al. (2005) Alternative energy sources for the ablation of arrhythmias. Pacing Clin Electrophysiol 28: 434–443

    Article  PubMed  Google Scholar 

  8. Ernst S, Ouyang F, Goya M et al. (2003) Total pulmonary vein occlusion as a consequence of catheter ablation for atrial fibrillation mimicking primary lung disease. J Cardiovasc Electrophysiol 14: 366–370

    Article  PubMed  Google Scholar 

  9. Ernst S, Ouyang F, Linder C et al. (2004) Initial experience with remote catheter ablation using a novel magnetic navigation system. Circulation 109: 1472–1475

    Article  PubMed  Google Scholar 

  10. Ernst S, Chun KRJ, Ujeyl A et al. (2006) Radiation exposure for investigators and patients during remote-controlled catheter ablation of supraventricular tachycardia. Eur H J: (in print)

  11. Faddis MN, Blume W, Finney J et al. (2002) Novel, magnetically guided catheter for endocardial mapping and radiofrequency catheter ablation. Circulation 106: 2980–2985

    Article  PubMed  Google Scholar 

  12. Faddis MN, Chen J, Osborn J et al. (2003) Magnetic guidance system for cardiac electrophysiology: a prospective trial of safety and efficacy in humans. J Am Coll Cardiol 42: 1952–1958

    Article  PubMed  Google Scholar 

  13. Gallagher JJ; Svenson RH; Kasell JH (1982) Catheter technique for closed-chest ablation of atrioventricular conduction system. N Engl J Med 306: 194–200

    PubMed  Google Scholar 

  14. Guiraudon GM, Klein GJ, Yee R (1993) Supraventricular tachycardias: the role of surgery. Pacing Clin Electrophysiol 16: 658–670

    Article  PubMed  Google Scholar 

  15. Haissaguerre M, Jais P, Shah DC et al. (1998) Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339: 659–666

    Article  PubMed  Google Scholar 

  16. Jais P, Haissaguerre M, Shah DC et al. (1997) A focal source of atrial fibrillation treated by discrete radiofrequency ablation. Circulation 95: 572–576

    PubMed  Google Scholar 

  17. Lemola K, Sneider M, Desjardins B et al. (2004) Computed tomographic analysis of the anatomy of the left atrium and the esophagus: implications for left atrial catheter ablation. Circulation 110: 3655–3660

    Article  PubMed  Google Scholar 

  18. Marrouche NF, Martin DO, Wazni O et al. (2003) Phased-array intracardiac echocardiography monitoring during pulmonary vein isolation in patients with atrial fibrillation: impact on outcome and complications. Circulation 107: 2710–2716

    Article  PubMed  Google Scholar 

  19. Nakagawa H, Antz M, Kuck KH et al. (2004) Initial clinical experience with high intensity focused ultrasound balloon catheter for pulmonary vein antrum isolation in patients with atrial fibrillation. Circulation 110: 10851a

    Google Scholar 

  20. Ouyang F, Baensch D, Ernst S et al. (2004) Complete isolation of left atrium surrounding the pulmonary veins: new insights from the double lasso technique in paroxysmal atrial fibrillation. Circulation 110: 2090–2096

    Article  PubMed  Google Scholar 

  21. Ouyang F, Antz M, Ernst S et al. (2005) Recovered pulmonary vein conduction as a dominant factor for recurrent atrial tachyarrhythmias after complete circular isolation of the pulmonary veins: lessons from double lasso technique. Circulation 111: 127–135

    Article  PubMed  Google Scholar 

  22. Pappone C, Vicedomini G, Manguso F et al. (2006) Robotic magnetic navigation for atrial fibrillation ablation. J Am Coll Cardiol 47: 1390–1400

    Article  PubMed  Google Scholar 

  23. Reddy VY, Malchano ZJ, Holmvang G et al. (2004) Integration of cardiac magnetic resonance imaging with three-dimensional electroanatomic mapping to guide left ventricular catheter manipulation: feasibility in a porcine model of healed myocardial infarction. J Am Coll Cardiol 44: 2202–2213

    Article  PubMed  Google Scholar 

  24. Reddy VY, Houghtaling C, Fallon J et al. (2004) Use of a diode laser balloon ablation catheter to generate circumferential pulmonary venous lesions in an open-thoracotomy caprine model. Pacing Clin Electrophysiol 27: 52–57

    Article  PubMed  Google Scholar 

  25. Saliba W, Wilber D, Packer D et al. (2002) Circumferential ultrasound ablation for pulmonary vein isolation: analysis of acute and chronic failures. J Cardiovasc Electrophysiol 13: 957–961

    Article  PubMed  Google Scholar 

  26. Thornton AS, Jordaens LJ (2006) Remote magnetic navigation for mapping and ablating right ventricular outflow tract tachycardia. Heart Rhythm 3: 691–696

    Article  PubMed  Google Scholar 

  27. Verma A, Natale A (2005) Should atrial fibrillation ablation be considered first-line therapy for some patients? Why atrial fibrillation ablation should be considered first-line therapy for some patients. Circulation 112: 1214–1222

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Kooperation im Rahmen von Forschungsprojekten mit Biosense Webster, ProRhythm, Stereotaxis.

Trotz des möglichen Interessenkonflikts ist der Beitrag unabhängig und produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.-H. Kuck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ernst, S., Kuck, KH. Neue Therapiemöglichkeiten für Arrhythmien durch Katheterablation. Internist 47, 1034–1039 (2006). https://doi.org/10.1007/s00108-006-1698-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-006-1698-4

Schlüsselwörter

Keywords

Navigation