Skip to main content
Log in

Molekularbiologischer Erregernachweis bei Patienten mit Sepsis

Möglichkeiten, Grenzen, Perspektiven

Molecular biological detection of pathogens in patients with sepsis

Potentials, limitations and perspectives

  • Leitthema
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Das klinisch variable Erscheinungsbild und die fortbestehenden Schwierigkeiten beim zeitnahen sensitiven und spezifischen laboratoriumsmedizinischen Infektionsnachweis machen die Sepsis immer noch zu einer schwierigen und zumeist primär klinischen Diagnose. Zeitgemäße Diagnostikkonzepte für eine direkte Erregerdiagnose aus Vollblut auf der Basis qualitativer und quantitativer molekularbiologischer Detektionsmethoden werden daher vielfach als ein interessanter Ausweg angesehen, um dem Dilemma einer wenig sensitiven und zumeist relativ zeitintensiven mikrobiellen Erregerdiagnostik auf der Basis klassischer Kulturverfahren zu entgehen und der Notwendigkeit Rechnung zu tragen, bei septischen Patienten möglichst frühzeitig eine erregerorientierte zielgerichtete Antibiotikatherapie zu initiieren. Zudem legen erste klinische Studienergebnisse die mögliche zukünftige Bedeutung sensitiver kulturunabhängiger Verfahren mit kurzen „Turn-around“-Zeiten für effektivere Therapiemöglichkeiten und ein besseres Outcome von Patienten mit schweren Infektionen wie Sepsis und septischem Schock nahe. Zunächst sind molekularbiologische Nachweise allerdings trotz vieler Vorteile bei Geschwindigkeit und Sensitivität als komplementäre Verfahren zu sehen und werden klassische Testverfahren wie die Blutkultur auch unter finanziellen Gesichtspunkten in vielen Bereichen nicht kurzfristig ersetzen können. Es ist aber damit zu rechnen, dass analog zur rasanten Entwicklung in anderen Technologiefeldern, molekularbiologische Verfahren, die heute noch als kompliziert, arbeitsaufwendig und teuer gelten, in Zukunft den Standard der infektiologischen und mikrobiologischen Diagnostik prägen werden.

Abstract

The wide variability of clinical symptoms and the ongoing difficulties concerning the rapid and specific laboratory diagnosis of sepsis, contribute to the fact that sepsis primarily remains a clinical diagnosis. To contribute to a more tailored antibiotic coverage of the patient early on in the course of the disease, modern diagnostic concepts favour the qualitative and quantitative molecular biological detection of blood stream pathogens directly from whole blood. This offers a very attractive alternative to the currently applied less sensitive and much more time-consuming blood culture-based laboratory methods. Moreover, recent study results suggest an increasing impact of molecular detection methods with short turn-around times for more effective treatment and better outcomes of patients with sepsis and septic shock. In the short term, such tests will not substitute conventional blood culture despite their superior rapidity and sensitivity, mainly because of higher cost. The amazing speed of ongoing scientific developments means, however, that techniques that might appear complicated, labour intensive, and costly today, will develop to become the future standards in the microbiological diagnosis of patients with sepsis and septic shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Engel C, Brunkhorst FM, Bone HG et al. (2007) Epidemiology of sepsis in Germany: results from a national prospective multicenter study. Intensive Care Med 33(4): 606–618

    Article  PubMed  Google Scholar 

  2. Dellinger RP, Carlet JM, Masur H et al. (2004) Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 32(3): 858–873

    Article  PubMed  Google Scholar 

  3. Kumar A, Roberts D, Wood KE et al. (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34(6): 1589–1596

    Article  PubMed  Google Scholar 

  4. Libman E (1906) On some experiences with blood-cultures in the study of bacterial infections. John Hopkins Hosp Bull 17: 215–228

    Google Scholar 

  5. Alberti C, Brun-Buisson C, Burchardi H et al. (2002) Epidemiology of sepsis and infection in ICU patients from an international multicentre cohort study. Intensive Care Med 28(2): 108–121

    Article  PubMed  Google Scholar 

  6. Washington JA (1987) The microbiological diagnosis of infective endocarditis. J Antimicrob Chemother 20 [Suppl A]: 29–39

  7. Vincent JL, Bihari DJ, Suter PM et al. (1995) The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. EPIC International Advisory Committee. JAMA 274(8): 639–644

    Article  PubMed  CAS  Google Scholar 

  8. Schottmüller H (1914) Wesen und Behandlung der Sepsis. Verh Dtsch Ges Inn Med 31

  9. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20(6): 864–874

    Article  Google Scholar 

  10. Reinhart K, Brunkhorst FM, Bone H, et al. (2006) Diagnose und Therapie der Sepsis. Intensiv- und Notfallbehandlung 31: 3–32

  11. Welte T, Brunkhorst FM (2007) Antibiotikatherapie der Sepsis. Med Welt 58: 315–321

    Google Scholar 

  12. Pittet D, Tarara D, Wenzel RP (1994) Nosocomial bloodstream infection in critically ill patients. Excess length of stay, extra costs, and attributable mortality. JAMA 271(20): 1598–1601

    Article  PubMed  CAS  Google Scholar 

  13. Struelens MJ, Mendonca R de (2001) The emerging power of molecular diagnostics: towards improved management of life-threatening infection. Intensive Care Med 27(11): 1696–1698

    Article  PubMed  CAS  Google Scholar 

  14. Belkum A van (2003) Molecular diagnostics in medical microbiology: yesterday, today and tomorrow. Curr Opin Pharmacol 3(5): 497–501

    Article  PubMed  CAS  Google Scholar 

  15. Peters RP, Agtmael MA van, Danner SA et al. (2004) New developments in the diagnosis of bloodstream infections. Lancet Infect Dis 4(12): 751–760

    Article  PubMed  CAS  Google Scholar 

  16. Teba L (1999) Polymerase chain reaction: a new chapter in critical care diagnosis. Crit Care Med 27(5): 860–861

    Article  PubMed  CAS  Google Scholar 

  17. Seifert H, Shah P et al. (1997) Sepsis-Blutkulturdiagnostik. In: Mauch H, Lütticken R, Gatermann S (Hrsg) Qualitätsstandards in der mikrobiologisch-infektiologischen Diagnostik. Urban & Fischer, München

  18. Gauduchon V, Chalabreysse L, Etienne J et al. (2003) Molecular diagnosis of infective endocarditis by PCR amplification and direct sequencing of DNA from valve tissue. J Clin Microbiol 41(2): 763–766

    Article  PubMed  CAS  Google Scholar 

  19. Breitkopf C, Hammel D, Scheld HH et al. (2005) Impact of a molecular approach to improve the microbiological diagnosis of infective heart valve endocarditis. Circulation 111(11): 1415–1421

    Article  PubMed  CAS  Google Scholar 

  20. Bosshard PP, Kronenberg A, Zbinden R et al. (2003) Etiologic diagnosis of infective endocarditis by broad-range polymerase chain reaction: a 3-year experience. Clin Infect Dis 37(2): 167–172

    Article  PubMed  Google Scholar 

  21. Munson EL, Diekema DJ, Beekmann SE et al. (2003) Detection and treatment of bloodstream infection: laboratory reporting and antimicrobial management. J Clin Microbiol 41(1): 495–497

    Article  PubMed  Google Scholar 

  22. McKenzie R, Reimer LG (1987) Effect of antimicrobials on blood cultures in endocarditis. Diagn Microbiol Infect Dis 8(3): 165–172

    Article  PubMed  CAS  Google Scholar 

  23. Glerant JC, Hellmuth D, Schmit JL et al. (1999) Utility of blood cultures in community-acquired pneumonia requiring hospitalization: influence of antibiotic treatment before admission. Respir Med 93(3): 208–212

    Article  PubMed  CAS  Google Scholar 

  24. Serody JS, Berrey MM, Albritton K et al. (2000) Utility of obtaining blood cultures in febrile neutropenic patients undergoing bone marrow transplantation. Bone Marrow Transplant 26(5): 533–538

    Article  PubMed  CAS  Google Scholar 

  25. Neu HC (1986) Cost effective blood cultures – Is it possible or impossible to modify behavior? Infect Control 7(1): 32–33

    PubMed  CAS  Google Scholar 

  26. Marlowe EM, Hogan JJ, Hindler JF et al. (2003) Application of an rRNA probe matrix for rapid identification of bacteria and fungi from routine blood cultures. J Clin Microbiol 41(11): 5127–5133

    Article  PubMed  CAS  Google Scholar 

  27. Leinberger DM, Schumacher U, Autenrieth IB, Bachmann TT (2005) Development of a DNA microarray for detection and identification of fungal pathogens involved in invasive mycoses. J Clin Microbiol 43(10): 4943–4953

    Article  PubMed  CAS  Google Scholar 

  28. Kempf VA, Trebesius K, Autenrieth IB (2000) Fluorescent in situ hybridization allows rapid identification of microorganisms in blood cultures. J Clin Microbiol 38(2): 830–838

    PubMed  CAS  Google Scholar 

  29. Oliveira K, Haase G, Kurtzman C et al. (2001) Differentiation of Candida albicans and Candida dubliniensis by fluorescent in situ hybridization with peptide nucleic acid probes. J Clin Microbiol 39(11): 4138–4141

    Article  PubMed  CAS  Google Scholar 

  30. Maes N, Magdalena J, Rottiers S et al. (2002) Evaluation of a triplex PCR assay to discriminate Staphylococcus aureus from coagulase-negative Staphylococci and determine methicillin resistance from blood cultures. J Clin Microbiol 40(4): 1514–1517

    Article  PubMed  CAS  Google Scholar 

  31. Turenne CY, Witwicki E, Hoban DJ et al. (2000) Rapid identification of bacteria from positive blood cultures by fluorescence-based PCR-single-strand conformation polymorphism analysis of the 16S rRNA gene. J Clin Microbiol 38(2): 513–520

    PubMed  CAS  Google Scholar 

  32. Qian Q, Tang YW, Kolbert CP et al. (2001) Direct identification of bacteria from positive blood cultures by amplification and sequencing of the 16S rRNA gene: evaluation of BACTEC 9240 instrument true-positive and false-positive results. J Clin Microbiol 39(10): 3578–3582

    Article  PubMed  CAS  Google Scholar 

  33. Cockerill FR 3rd (2003) Application of rapid-cycle real-time polymerase chain reaction for diagnostic testing in the clinical microbiology laboratory. Arch Pathol Lab Med 127(9): 1112–1120

    PubMed  CAS  Google Scholar 

  34. Lehmann L, Hunfeld KP, Emmrich T et al. (2008) A multiplex real-time PCR assay for rapid detection and differentiation of 25 bacterial and fungal pathogens from whole blood samples. Med Microbiol Immmunol (in press)

  35. Mullis K (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51: 263–273

    PubMed  CAS  Google Scholar 

  36. Song JH, Cho H, Park MY et al. (1993) Detection of Salmonella typhi in the blood of patients with typhoid fever by polymerase chain reaction. J Clin Microbiol 31(6): 1439–1443

    PubMed  CAS  Google Scholar 

  37. Iralu JV, Sritharan VK, Pieciak WS et al. (1993) Diagnosis of Mycobacterium avium bacteremia by polymerase chain reaction. J Clin Microbiol 31(7): 1811–1814

    PubMed  CAS  Google Scholar 

  38. Gilbert GL (2002) Molecular diagnostics in infectious diseases and public health microbiology: cottage industry to postgenomics. Trends Mol Med 8(6): 280–287

    Article  PubMed  CAS  Google Scholar 

  39. Hunfeld KP (2007) Rapid PCR-based pathogen detection in patients with clinical sepsis: a microbiologist’s perspective. Infection 35: 38

    Google Scholar 

  40. Corless CE, Guiver M, Borrow R et al. (2001) Simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae in suspected cases of meningitis and septicemia using real-time PCR. J Clin Microbiol 39 (4): 1553–1558

    Article  PubMed  CAS  Google Scholar 

  41. Saravolatz LD, Manzor O, Vander Velde N, Pawlak J, Belian B (2003) Broad-range bacterial polymerase chain reaction for early detection of bacterial meningitis. Clin Infect Dis 36(1): 40–45

    Article  PubMed  CAS  Google Scholar 

  42. Harbarth S, Garbino J, Pugin J et al. (2003) Inappropriate initial antimicrobial therapy and its effect on survival in a clinical trial of immunomodulating therapy for severe sepsis. Am J Med 115(7): 529–535

    Article  PubMed  Google Scholar 

  43. Klaschik S, Lehmann LE, Raadts A et al. (2004) Detection and differentiation of in vitro-spiked bacteria by real-time PCR and melting-curve analysis. J Clin Microbiol 42(2): 512–517

    Article  PubMed  CAS  Google Scholar 

  44. Klaschik S, Lehmann LE, Raadts A et al. (2002) Real-time PCR for detection and differentiation of gram-positive and gram-negative bacteria. J Clin Microbiol 40 (11): 4304–4307

    Article  PubMed  CAS  Google Scholar 

  45. Jordan JA, Durso MB (2000) Comparison of 16S rRNA gene PCR and BACTEC 9240 for detection of neonatal bacteremia. J Clin Microbiol 38(7): 2574–2578

    PubMed  CAS  Google Scholar 

  46. Jordan JA, Durso MB, Butchko AR et al. (2006) Evaluating the near-term infant for early onset sepsis: progress and challenges to consider with 16S rDNA polymerase chain reaction testing. J Mol Diagn 8 (3): 357–363

    Article  PubMed  CAS  Google Scholar 

  47. Rothman RE, Majmudar MD, Kelen GD et al. (2002) Detection of bacteremia in emergency department patients at risk for infective endocarditis using universal 16S rRNA primers in a decontaminated polymerase chain reaction assay. J Infect Dis 186(11): 1677–1681

    Article  PubMed  CAS  Google Scholar 

  48. Cursons RT, Jeyerajah E, Sleigh JW (1999) The use of polymerase chain reaction to detect septicemia in critically ill patients. Crit Care Med 27(5): 937–940

    Article  PubMed  CAS  Google Scholar 

  49. Kane TD, Alexander JW, Johannigman JA (1998) The detection of microbial DNA in the blood: a sensitive method for diagnosing bacteremia and/or bacterial translocation in surgical patients. Ann Surg 227(1): 1–9

    Article  PubMed  CAS  Google Scholar 

  50. Laforgia N, Coppola B, Carbone R et al. (1997) Rapid detection of neonatal sepsis using polymerase chain reaction. Acta Paediatr 86(10): 1097–1099

    Article  PubMed  CAS  Google Scholar 

  51. Ley BE, Linton CJ, Bennett DM et al. (1998) Detection of bacteraemia in patients with fever and neutropenia using 16S rRNA gene amplification by polymerase chain reaction. Eur J Clin Microbiol Infect Dis 17(4): 247–253

    PubMed  CAS  Google Scholar 

  52. Shang S, Chen G, Wu Y et al. (2005) Rapid diagnosis of bacterial sepsis with PCR amplification and microarray hybridization in 16S rRNA gene. Pediatr Res 58(1): 143–148

    Article  PubMed  CAS  Google Scholar 

  53. Sleigh J, Cursons R, Pine M la (2001) Detection of bacteraemia in critically ill patients using 16S rDNA polymerase chain reaction and DNA sequencing. Intensive Care Med 27(8): 1269–1273

    Article  PubMed  CAS  Google Scholar 

  54. Werner AS, Cobbs CG, Kaye D, Hook EW (1967) Studies on the bacteremia of bacterial endocarditis. JAMA 202(3): 199–203

    Article  PubMed  CAS  Google Scholar 

  55. Kreger BE, Craven DE, Carling PC, McCabe WR (1980) Gram-negative bacteremia. III. Reassessment of etiology, epidemiology and ecology in 612 patients. Am J Med 68(3): 332–343

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehung hin: Die Autoren haben an von der Fa. Roche Diagnostics, Penzberg, finanzierten Studien zur Evaluation und Zulassung PCR-gestützter Testsysteme (SeptiFast®) teilgenommen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.-P. Hunfeld MPH.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunfeld, KP., Bingold, T., Brade, V. et al. Molekularbiologischer Erregernachweis bei Patienten mit Sepsis. Anaesthesist 57, 326–337 (2008). https://doi.org/10.1007/s00101-008-1345-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-008-1345-7

Schlüsselwörter

Keywords

Navigation