Skip to main content
Log in

Regulierte Hypothermie nach Herz-Kreislauf-Stillstand

Ein Blick in die Zukunft

Regulated hypothermia after cardiac arrest

A glimpse into the future

  • Leitthema
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Die Einführung der therapeutischen milden Hypothermie nach Herz-Kreislauf-Stillstand eröffnete erstmals die Möglichkeit, den neuronalen Schaden nach globaler zerebraler Ischämie günstig zu beeinflussen. Gegenwärtig erfolgt die Induktion der Hypothermie durch externe oder interne Kühlung des Patienten (forcierte Hypothermie). Hierdurch werden jedoch physiologische Gegenregulationsmechanismen aktiviert, die möglicherweise ihrerseits ein Risiko für den Patienten darstellen. Ziel dieses Übersichtsartikels ist es, einen Ausblick auf mögliche, zurzeit noch experimentelle Ansätze zu geben, durch die sich stattdessen pharmakologisch der Sollwert der Körpertemperatur nach unten verstellen lässt (regulierte Hypothermie). Es werden verschiedene Substanzklassen bezüglich ihrer Wirkung auf die Thermoregulation und ihrer Anwendung in Tiermodellen der zerebralen Ischämie diskutiert.

Abstract

The introduction of therapeutic mild hypothermia after cardiac arrest allows the neuronal damage caused by global cerebral ischemia to be advantageously influenced for the first time. Currently, hypothermia is induced by external or internal cooling of the patient (forced hypothermia). However, this results in activation of counter-regulation mechanisms which could be possible risk factors for the patient. The aim of this article is to give a review of possible, but at present only experimental, methods which could allow the body temperature set point to be decreased pharmacologically (regulated hypothermia). Various classes of substances will be discussed based on their effect on thermoregulation and their performance in animal experiments on cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Adler MW, Hawk C, Geller EB (1983) Comparison of intraventricular morphine and opioid peptides on body temperature of rats. In: Lomax P, Schönbaum E (eds) Environment, drugs and thermoregulation. Karger, Basel, S 90–93

  2. Alem AP van, Vos R de, Schmand B, Koster RW (2004) Cognitive impairment in survivors of out-of-hospital cardiac arrest. Am Heart J 148: 416–421

    Article  PubMed  Google Scholar 

  3. Anderson R, Sheehan MJ, Strong P (1994) Characterization of the adenosine receptors mediating hypothermia in the conscious mouse. Br J Pharmacol 113: 1386–1390

    PubMed  Google Scholar 

  4. Appelbaum BD, Holtzman SG (1986) Stress-induced changes in the analgesic and thermic effects of opioid peptides in the rat. Brain Res 377: 330–336

    Article  PubMed  Google Scholar 

  5. Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38: 1083–1152

    Article  PubMed  Google Scholar 

  6. Bernard SA, Gray TW, Buist MD et al. (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346: 557–563

    Article  PubMed  Google Scholar 

  7. Bissette G, Luttinger D, Mason GA et al. (1982) Neurotensin and thermoregulation. Ann N Y Acad Sci 400: 268–282

    PubMed  Google Scholar 

  8. Blier P, Seletti B, Gilbert F et al. (2002) Serotonin1A receptor activation and hypothermia in humans: lack of evidence for a presynaptic mediation. Neuropsychopharmacology 27: 301–308

    Article  PubMed  Google Scholar 

  9. Bligh J (1998) Mammalian homeothermy: an integrative thesis. J Thermal Biol 23: 143–258

    Article  Google Scholar 

  10. Borlongan CV, Oeltgen PR, Su TP, Wang Y (1998) Delta opioid peptide (DADLE) neuroprotects against ischemia-reperfusion damage in the striatum and cerebral cortex. Soc Neurosci Abstr 24: 979

    Google Scholar 

  11. Böttiger BW, Grabner C, Bauer H et al. (1999) Long term outcome after out-of-hospital cardiac arrest with physician staffed emergency medical services: the Utstein style applied to a midsized urban/suburban area. Heart 82: 674–679

    PubMed  Google Scholar 

  12. Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83: 1153–1181

    PubMed  Google Scholar 

  13. Carraway R, Leeman SE (1973) The isolation of a new hypotensive peptide, neurotensin, from bovine hypothalami. J Biol Chem 248: 6854–6861

    PubMed  Google Scholar 

  14. Chen W, Yang JZ, Andersen R et al. (2002) Evaluation of the permeation characteristics of a model opioid peptide, H-Tyr-D-Ala-Gly-Phe-D-Leu-OH (DADLE), and its cyclic prodrugs across the blood-brain barrier using an in situ perfused rat brain model. J Pharmacol Exp Ther 303: 849–857

    Article  PubMed  Google Scholar 

  15. Chien S, Oeltgen PR, Diana JN et al. (1994) Extension of tissue survival time in multiorgan block preparation with a delta opioid DADLE ([D-Ala2, D-Leu5]-enkephalin). J Thorac Cardiovasc Surg 107: 964–967

    PubMed  Google Scholar 

  16. Emergency Cardiovascular Care (ECC) Committee, ECC Subcommittees, ECC Taskforces (2005) 2005 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Part 7.5. Postresuscitation support. Circulation 112: IV84–IV88. http://circ.ahajournals.org/content/vol112/24_suppl/

    Google Scholar 

  17. Eisenberg MS, Mengert TJ (2001) Cardiac resuscitation. N Engl J Med 344: 1304–1313

    Article  PubMed  Google Scholar 

  18. Fantegrossi WE, Ko MC, Woods JH, Richelson E (2005) Antinociceptive, hypothermic, hypotensive, and reinforcing effects of a novel neurotensin receptor agonist, NT69L, in rhesus monkeys. Pharmacol Biochem Behav 80: 341–349

    Article  PubMed  Google Scholar 

  19. Frank SM, Fleisher LA, Breslow MJ et al. (1997) Perioperative maintenance of normothermia reduces the incidence of morbid cardiac events. A randomized clinical trial. JAMA 277: 1127–1134

    Article  PubMed  Google Scholar 

  20. Frerichs KU, Kennedy C, Sokoloff L, Hallenbeck JM (1994) Local cerebral blood flow during hibernation, a model of natural tolerance to „cerebral ischemia“. J Cereb Blood Flow Metab 14: 193–205

    PubMed  Google Scholar 

  21. Gordon CJ, McMahon B, Richelson E et al. (2003) Neurotensin analog NT77 induces regulated hypothermia in the rat. Life Sci 73: 2611–2623

    Article  PubMed  Google Scholar 

  22. Gudelsky GA, Koenig JI, Meltzer HY (1986) Thermoregulatory responses to serotonin (5-HT) receptor stimulation in the rat. Evidence for opposing roles of 5-HT2 and 5-HT1A receptors. Neuropharmacology 25: 1307–1313

    Article  PubMed  Google Scholar 

  23. Hammel HT (1968) Regulation of internal body temperature. Annu Rev Physiol 30: 641–710

    Article  PubMed  Google Scholar 

  24. Hjorth S (1985) Hypothermia in the rat induced by the potent serotoninergic agent 8-OH-DPAT. J Neural Transm 61: 131–135

    Article  PubMed  Google Scholar 

  25. Horvath SM, Spurr GB, Hutt BK, Hamilton LH (1956) Metabolic cost of shivering. J Appl Physiol 8: 595–602

    PubMed  Google Scholar 

  26. Hypothermia after Cardiac Arrest Study Group (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346: 549–556

    Article  PubMed  Google Scholar 

  27. Iwata M, Inoue S, Kawaguchi M et al. (2004) Effect of delta opioid receptor stimulation on global cerebral ischemia in rats. Anesthesiology 101: A771

    Google Scholar 

  28. Katz LM, Young A, Frank JE et al. (2004) Neurotensin-induced hypothermia improves neurologic outcome after hypoxic-ischemia. Crit Care Med 32: 806–810

    Article  PubMed  Google Scholar 

  29. Kouwenhoven WB, Jude JR, Knickerbocker GG (1960) Closed-chest cardiac massage. JAMA 173: 1064–1067

    PubMed  Google Scholar 

  30. Kranke P, Eberhart LH, Roewer N, Tramèr MR (2002) Pharmacological treatment of postoperative shivering: a quantitative systematic review of randomized controlled trials. Anesth Analg 94: 453–460

    Article  PubMed  Google Scholar 

  31. Kurz M, Belani KG, Sessler DI et al. (1993) Naloxone, meperidine, and shivering. Anesthesiology 79: 1193–1201

    PubMed  Google Scholar 

  32. Matsukawa T, Sessler DI, Sessler AM et al. (1995) Heat flow and distribution during induction of general anesthesia. Anesthesiology 82: 662–673

    Article  PubMed  Google Scholar 

  33. Nolan JP, Deakin CD, Soar J et al. (2005) European Resuscitation Council guidelines for resuscitation 2005. Section 4. Adult advanced life support. Resuscitation 67: S39–86; http://www.erc.edu/index.php/guidelines/en/

    Article  PubMed  Google Scholar 

  34. Oeltgen PR, Nilekani SP, Nuchols PA et al. (1988) Further studies on opioids and hibernation: delta opioid receptor ligand selectively induced hibernation in summer-active ground squirrels. Life Sci 43: 1565–1574

    Article  PubMed  Google Scholar 

  35. Oerther S (2000) Temperature set-point changes induced by DA D2/3 and 5-HT1A receptor agonists in the rat. Neuroreport 11: 3949–3951

    PubMed  Google Scholar 

  36. Ootsuka Y, Blessing WW (2006) Thermogenesis in brown adipose tissue: increase by 5-HT2A receptor activation and decrease by 5-HT1A receptor activation in conscious rats. Neurosci Lett 395: 170–174

    Article  PubMed  Google Scholar 

  37. Padosch SA, Vogel P, Böttiger BW (2001) Neuronale Apoptose nach zerebraler Ischämie. Grundlagen, Pathophysiologie und Interventionsmöglichkeiten. Anaesthesist 50: 905–920

    Article  PubMed  Google Scholar 

  38. Paris A, Ohlendorf C, Marquardt M et al. (2005) The effect of meperidine on thermoregulation in mice: involvement of α2-adrenoceptors. Anesth Analg 100: 102–106

    Article  PubMed  Google Scholar 

  39. Patapoutian A, Peier AM, Story GM, Viswanath V (2003) ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat Rev Neurosci 4: 529–539

    Article  PubMed  Google Scholar 

  40. Polak JM, Bloom SR (1982) The central and peripheral distribution of neurotensin. Ann N Y Acad Sci 400: 75–93

    PubMed  Google Scholar 

  41. Popp E, Sterz F, Böttiger BW (2005) Therapeutische milde Hypothermie nach Herz-Kreislauf-Stillstand. Anaesthesist 54: 96–106

    Article  PubMed  Google Scholar 

  42. Quan N, Xin L, Ungar AL, Blatteis CM (1992) Preoptic norepinephrine-induced hypothermia is mediated by α2-adrenoceptors. Am J Physiol Regul Integr Comp Physiol 262: R407–R411

    Google Scholar 

  43. Quéva C, Bremner-Danielsen M, Edlund A et al. (2003) Effects of GABA agonists on body temperature regulation in GABAB(1)-/- mice. Br J Pharmacol 140: 315–322

    Article  PubMed  Google Scholar 

  44. Quock RM, Burkey TH, Varga E et al. (1999) The δ-opioid receptor: molecular pharmacology, signal transduction, and the determination of drug efficacy. Pharmacol Rev 51: 503–532

    PubMed  Google Scholar 

  45. Rawls SM, Cabassa J, Geller EB, Adler MW (2002) CB1 receptors in the preoptic anterior hypothalamus regulate WIN 55212–2 [(4,5-dihydro-2-methyl-4(4-morpholinylmethyl)-1-(1-naphthalenyl-carbonyl)- 6H-pyrrolo[3,2,1ij]quinolin-6-one]-induced hypothermia. J Pharmacol Exp Ther 301: 963–968

    Article  PubMed  Google Scholar 

  46. Roine RO, Kajaste S, Kaste M (1993) Neuropsychological sequelae of cardiac arrest. JAMA 269: 237–242

    Article  PubMed  Google Scholar 

  47. Safar P, Escarraga LA, Elam JO (1958) A comparison of the mouth-to-mouth and mouth-to-airway methods of artificial respiration with the chest-pressure arm-lift methods. N Engl J Med 258: 671–677

    PubMed  Google Scholar 

  48. Sessler DI (1997) Mild perioperative hypothermia. N Engl J Med 336: 1730–1737

    Article  PubMed  Google Scholar 

  49. Sessler DI, Rubinstein EH, Moayeri A (1991) Physiologic responses to mild perianesthetic hypothermia in humans. Anesthesiology 75: 594–610

    PubMed  Google Scholar 

  50. Spencer RL, Hruby VJ, Burks TF (1990) Alteration of thermoregulatory set point with opioid agonists. J Pharmacol Exp Ther 252: 696–705

    PubMed  Google Scholar 

  51. Talke P, Tayefeh F, Sessler DI et al. (1997) Dexmedetomidine does not alter the sweating threshold, but comparably and linearly decreases the vasoconstriction and shivering thresholds. Anesthesiology 87: 835–841

    Article  PubMed  Google Scholar 

  52. Torup L, Møller A, Sager TN, Diemer NH (2000) Neuroprotective effect of 8-OH-DPAT in global cerebral ischemia assessed by stereological cell counting. Eur J Pharmacol 395: 137–141

    Article  PubMed  Google Scholar 

  53. Tseng LF, Ostwald TJ, Loh HH, Li CH (1979) Behavioral activities of opioid peptides and morphine sulfate in golden hamsters and rats. Psychopharmacology 64: 215–218

    Article  PubMed  Google Scholar 

  54. Tyler-McMahon BM, Stewart JA, Farinas F et al. (2000) Highly potent neurotensin analog that causes hypothermia and antinociception. Eur J Pharmacol 390: 107–111

    Article  PubMed  Google Scholar 

  55. Vecchio L, Soldani C, Bottone MG et al. (2006) DADLE induces a reversible hibernation-like state in HeLa cells. Histochem Cell Biol 125: 193–201

    Article  PubMed  Google Scholar 

  56. Vreede-Swagemakers JJM de, Gorgels APM, Dubois-Arbouw WI et al. (1997) Out-of-hospital cardiac arrest in the 1990’s: a population-based study in the Maastricht area on incidence, characteristics and survival. J Am Coll Cardiol 30: 1500–1505

    Article  PubMed  Google Scholar 

  57. Wachtel H (1982) Characteristic behavioural alterations in rats induced by rolipram and other selective adenosine cyclic 3’,5’-monophosphate phosphodiesterase inhibitors. Psychopharmacology 77: 309–316

    Article  PubMed  Google Scholar 

  58. Witte J de, Sessler DI (2002) Perioperative shivering: physiology and pharmacology. Anesthesiology 96: 467–484

    Article  PubMed  Google Scholar 

  59. Yamada M, Cho T, Coleman NJ et al. (1995) Regulation of daily rhythm of body temperature by neurotensin receptor in rats. Res Commun Mol Pathol Pharmacol 87: 323–332

    PubMed  Google Scholar 

  60. Zhang J, Gibney GT, Zhao P, Xia Y (2002) Neuroprotective role of δ-opioid receptors in cortical neurons. Am J Physiol Cell Physiol 282: C1225–C1234

    PubMed  Google Scholar 

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Popp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, A., Popp, E. & Böttiger, B.W. Regulierte Hypothermie nach Herz-Kreislauf-Stillstand. Anaesthesist 55, 1247–1254 (2006). https://doi.org/10.1007/s00101-006-1080-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-006-1080-x

Schlüsselwörter

Keywords

Navigation