Skip to main content
Log in

Präklinisches Management von Rückenmarkverletzungen

Prehospital management of spinal cord injuries

  • Notfallmedizin
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusamenfassung

Von den jeweils mehr als 10.000 Patienten, die jährlich in den USA und in Europa eine Rückenmarkverletzung (RMV) erleiden, sterben ca. 20% bereits vor Aufnahme in die Klinik. Weil bis zu 25% der RMV erst nach dem initialen Ereignis entstehen bzw. aggraviert werden, ist das präklinische Management wichtig. Hierzu gehören: Untersuchung des Patienten, Immobilisation der Wirbelsäule, Atemwegsmanagement unter strenger Indikationsstellung, kardiovaskuläre Stabilisierung mit Aufrechterhaltung eines mittleren arteriellen Drucks (MAP) über 90 mmHg sowie Stabilisierung einer Blutglukosekonzentration im Normbereich. Aus evidenzbasierter Sicht ist unbekannt, ob zusätzliche spezielle Therapiemaßnahmen von Nutzen sind. Bisher konnte nicht überzeugend belegt werden, dass Methylprednisolon (MPS) oder andere Substanzen einen klinisch wichtigen Benefit haben. Auch aktuelle US-amerikanische Stellungnahmen unterstützen nicht mehr die Therapie mit MPS bei RMV im prähospitalen Setting. Darüber hinaus ist unbekannt, ob die therapeutische Hypothermie oder andere pharmakologische Interventionen positiv wirken. Koordination und Durchführung weiterer klinischer Studien scheinen notwendig, um das Outcome der Patienten weiter zu verbessern.

Abstract

In both the United States and Europe about 10,000 patients suffer from spinal cord injury (SCI) each year and 20% die before being admitted to hospital. Prehospital management of SCI is very important since 25% of SCI damage may occur after the initial event. Emergency treatment includes examination of the patient, spinal immobilization, careful airway management, cardiovascular stabilization (maintenance of mean arterial blood pressure above 90 mmHg) and glucose levels within the normal range. From an evidence-based point of view, it is still not known whether additional specific therapy is useful and studies have not convincingly demonstrated that methylprednisolone (MPS) or other substances have clinically important benefits. Recently published statements from the US do not support the therapeutic use of MPS in patients suffering from SCI in the prehospital setting. Moreover, it is not known whether hypothermia or any other pharmacological interventions have beneficial effects. Networks for clinical studies in SCI patients should be established as a basic requirement for further improvement in outcome in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Amar AP, Levy ML (1999) Pathogenesis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury. Neurosurgery 44:1027–1039

    Article  Google Scholar 

  2. American Spinal Injury Association (2000) http://www.asia-spinalinjury.org/publications/2001_Classif_worksheet.pdf. Cited Jan 2005

  3. Bambakidis NC, Miller RH (2004) Transplantation of oligodendrocyte precursors and sonic hedgehog results in improved function and white matter sparing in the spinal cords of adult rats after contusion. Spine J 4:16–26

    Article  Google Scholar 

  4. Beck A, Gebhardt F, Kinzl L (2002) Notärztliche Versorgung des Traumapatienten. Notfall Rettungsmed 5:57–71

    Article  Google Scholar 

  5. Belanger E, Levi AD (2000) The acute and chronic management of spinal cord injury. J Am Coll Surg 190:603–618

    Article  Google Scholar 

  6. Benowitz LI, Goldberg DE, Irwin N (2002) Inosine stimulates axon growth in vitro and in the adult CNS. Prog Brain Res 137:389–399

    Google Scholar 

  7. Berghe G van den, Wouters P, Weekers F et al. (2001) Intensive insulin therapy in the critically ill patients. N Engl J Med 345:1359–1367

    Article  PubMed  Google Scholar 

  8. Bernhard M, Helm M, Aul A, Gries A (2004) Präklinisches Management des Polytraumas. Anaesthesist 53:887–904

    Article  Google Scholar 

  9. Bilello JF, Davis JW, Cunningham MA, Groom TF, Lemaster D, Sue LP (2003) Cervical spinal cord injury and the need for cardiovascular intervention. Arch Surg 138:1127–1129

    Article  Google Scholar 

  10. Black P, Markowitz RS (1971) Experimental spinal cord injury in monkeys: comparison of steroids and hypothermia. Surg Forum 22:409–411

    Google Scholar 

  11. Bledsoe BE, Wesley AK, Salomone JP (2004) For the National Association of EMS Physicians and Clinical Practice Committee. High-dose steroids for acute spinal cord injury in emergency medical services. Prehosp Emerg Care 8:313–316

    Article  Google Scholar 

  12. Blesch A, Lu P, Tuszynski MH (2002) Neurotrophic factors, gene therapy, and neural stem cells for spinal cord repair. Brain Res Bull 57:833–838

    Article  Google Scholar 

  13. Bracken MB, Collins WF, Freeman DF et al. (1984) Efficacy of methylprednisolone in acute spinal cord injury. JAMA 251:45–52

    Article  CAS  PubMed  Google Scholar 

  14. Bracken MB, Shepared MJ, Hellebrand KG et al. (1985) Methylprednisolone and neurological function 1 year after spinal cord injury. Results of the National Acute Spinal Cord Injury Study. J Neurosurg 63:704–713

    Google Scholar 

  15. Bracken MB, Shepard MJ, Collins WF et al. (1990) A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results from the Second National Acute Spinal Cord Injury Study. N Engl J Med 322:1405–1411

    CAS  PubMed  Google Scholar 

  16. Bracken MB, Shepard MJ, Collins WF Jr et al. (1992) Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data. Results of the Second National Acute Spinal Cord Injury Study. J Neurosurg 76:23–31

    CAS  PubMed  Google Scholar 

  17. Bracken MB, Shepard MJ, Holford TR et al. (1997) Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA 277:1597–1604

    Article  CAS  PubMed  Google Scholar 

  18. Bracken MB, Shepard MJ, Holford TR et al. (1998) Methylprednisolone or tirilazad mesylate administration after acute spinal cord injury: 1-year follow up. Results of the Third National Acute Spinal Cord Injury randomized controlled trial. J Neurosurg 89:699–706

    Google Scholar 

  19. Bradbury EJ, Moon LD, Popat RJ et al. (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416:636–640

    Article  CAS  PubMed  Google Scholar 

  20. Büttner J (2004) Management der Querschnittslähmung. Anaesthesiol Intensivmed 45:190–204

    Google Scholar 

  21. Bunge MB (2001) Bridging areas of injury in the spinal cord. Neuroscientist 7:325–339

    Google Scholar 

  22. Campbell DS, Holt CE (2003) Apoptotic pathway and MAPKs differentially regulate chemotropic responses of retinal growth cones. Neuron 37:939–952

    Article  Google Scholar 

  23. Campbell JB, Crescito V de, Tomasula JJ, Dempoulos HB, Flamm ES, Ransohoff J (1973) Experimental treatment of spinal cord contusion in the cat. Surg Neurol 1:102–106

    Google Scholar 

  24. Carvell JE, Grundy DJ (1994) Complications of spinal surgery in acute spinal cord injury. Paraplegia 32:389–395

    Google Scholar 

  25. Chesnut RM, Marshall SB, Piek J, Blunt BA, Klauber MR, Marshall LF (1993) Early and late systemic hypotension as a frequent and fundamental source of cerebral ischemia following severe brain injury in the Traumatic Coma Data Bank. Acta Neurochir Suppl (Wien) 59:121–125

    CAS  Google Scholar 

  26. Cheung AT, Weiss SJ, McGarvey ML et al. (2002) Interventions for reversing delayed-onset postoperative paraplegia after thoracic aortic reconstruction. Ann Thorac Surg 74:413–419

    Article  Google Scholar 

  27. Chiles BW, Cooper PR (1996) Acute spinal injury. N Engl J Med 334:514–520

    Article  Google Scholar 

  28. Coleman WP, Benzel D, Cahill DW et al. (2000) A critical appraisal of the reporting national acute spinal cord injury studies (II and III) of methylprednisolone in acute spinal cord injury. J Spinal Disord 13:185–199

    Article  Google Scholar 

  29. Colice GL, Matthay MA, Bass E, Matthay RA (1984) Neurogenic pulmonary edema. Am Rev Respir Dis 130:941–948

    Google Scholar 

  30. Cooper DJ, Myles PS, McDermott FT et al. (2004) Prehospital hypertonic saline resuscitation of patients with hypotension and severe traumatic brain injury—A randomized controlled trial. JAMA 291:1350–1357

    Article  Google Scholar 

  31. CRASH Trial Collaborators (2004) Effects of intravenous corticosteroids on death within 14 days in 10,008 adults with clinically significant head injury (MRC CRASH trial): randomised placebo-controlled trial. Lancet 364:1321–1328

    Article  Google Scholar 

  32. Demjen D, Klussmann S, Kleber S et al. (2004) Neutralization of CD95 ligand promotes regeneration and functional recovery after spinal cord injury. Nat Med 10:389–395

    Article  Google Scholar 

  33. Dergham P, Ellezam B, Essagian C, Avedissian H, Lubell WD, McKerracher L (2002) Rho signaling pathway targeted to promote spinal cord repair. J Neurosci 22:6570–6577

    CAS  PubMed  Google Scholar 

  34. Deutsche Stiftung Querschnittslähmung, http://www.dsq.de. Gesehen Jan 2005

  35. Dickinson K, Robert I (2000) Medical anti-shock trousers (pneumatic anti-shock garments) for circulatory support in patients with trauma. Cochrane Database Syst Rev CD001856

  36. Dieterich HJ (2001) Kolloide in der Intensivmedizin. Anaesthesist 50:54–68

    Article  Google Scholar 

  37. Domeier RM, Evans RW, Swor RA, Rivera-Rivera EJ, Frederiksen SM (1997) Prehospital clinical findings associated with spinal injury. Prehosp Emerg Care 1:11–15

    Google Scholar 

  38. Domeniconi M, Cao Z, Spencer T et al. (2002) Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth. Neuron 35:283–290

    Article  Google Scholar 

  39. Ducker TB, Hamit HF (1969) Experimental treatment of acute spinal cord injury. J Neurosurg 30:693–697

    Google Scholar 

  40. Dumont RJ, Okonkwo DO, Verma S et al. (2001) Acute spinal cord injury. Part I: pathophysiologic mechanisms. Clin Neuropharmacol 24:254–264

    Article  Google Scholar 

  41. Dyson-Hudson TA, Stein AB (1999) Acute management of traumatic cervical spinal cord injuries. Mt Sinai J Med 66:170–178

    Google Scholar 

  42. Eidelberg E, Staten E, Watkins CJ, Smith JS (1976) Treatment of experimental spinal cord injury in ferrets. Surg Neurol 6:243–246

    Google Scholar 

  43. Emery E, Aldana P, Bunge MB et al. (1998) Apoptosis after traumatic human spinal cord injury. J Neurosurg 89:911–920

    Google Scholar 

  44. Faden AI, Jacobs TP, Holaday JW (1981) Opiate antagonist improves neurological recovery after spinal injury. Science 211:493–494

    Google Scholar 

  45. Flamm ES, Young W, Collins WF et al. (1985) A phase 1 trial of naloxone treatment of acute spinal cord injury. J Neurosurg 63:390–397

    Google Scholar 

  46. Geisler FH, Dorsey FC, Coleman WP (1992) GM1-ganglioside in human spinal cord injury. J Neurotrauma 9 [Suppl 1]:S517–530

    Google Scholar 

  47. Geisler FH, Dorsey FC, Coleman WP (1993) Past and current studies with GM1-ganglioside in acute spinal cord injury. Ann Emerg Med 22:1041–1047

    Google Scholar 

  48. Gerling MC, Davis DP, Hamilton RS et al. (2000) Effects of cervical spine immobilization technique and laryngoscope blade selection on an unstable cervical spine in a cadaver model of intubation. Ann Emerg Med 36:293–300

    Article  Google Scholar 

  49. Gertz SD (1997) Basiswissen Neuroanatomie, 2. überarb. und erg. Aufl. Thieme, Stuttgart New York, S 171

  50. Gorio A, Gokmen N, Erbayraktar S et al. (2002) Recombinant human erythropoetin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc Natl Acad Sci U S A 99:9450–9455

    Article  CAS  PubMed  Google Scholar 

  51. GrandPre T, Li S, Strittmatter SM (2002) Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 417:547–551

    Article  Google Scholar 

  52. Green BA, Kahn T, Klose KJ (1980) A comparative study of steroid therapy in acute experimental spinal cord injury. Surg Neurol 13:91–97

    Google Scholar 

  53. Gries A, Bernhard M, Aul A (2003) Interdisziplinäres Polytraumamanagement—Teil 1: Präklinisches Polytraumamanagement. Notfall Rettungsmed 6:489–500

    Article  Google Scholar 

  54. Gris D, Marsh DR, Oatway MA et al. (2004) Transient blockade of the CD11d/CD18 integrin reduces secondary damage after spinal cord injury, improving sensory, autonomic, and motor function. J Neurosci 24:4043–4051

    Article  Google Scholar 

  55. Hauke J, Helm M, Lampl L (2001) Der eingeklemmte Pkw-Insasse aus der Sicht des Notarztes. Notarzt 17:47–52

    Article  Google Scholar 

  56. Hauswald M, Ong G, Tandberg D, Omar Z (1998) Out-of-hospital immobilization: its effect on neurologic injury. Acad Emerg Med 5:203–204

    Google Scholar 

  57. Himmelseher S, Büttner J, Baethmann A, Piek J, Unterberg AW (1999) Zur Gabe von Kortikosteroiden nach akuter spinaler Traumatisierung. Anaesthesiol Intensivmed 10:716–726

    Google Scholar 

  58. Hodgetts TJ, Smith J (2000) Essential role of prehospital care in the optimal outcome from major trauma. Emerg Med 12:103–111

    Article  Google Scholar 

  59. Hofstetter CP, Schwarz EJ, Hess D et al. (2002) Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci U S A 99:2199–2204

    Article  Google Scholar 

  60. Holley J, Jorden R (1989) Airway management in patients with unstable cervical spine fractures. Ann Emerg Med 18:1237–1239

    Google Scholar 

  61. Holly LT, Kelly DF, Counelis GJ, Blinman T, McArthur DL, Cryer HG (2002) Cervical spine trauma associated with moderate and severe head injury: incidence, risk factors, and injury characteristics. J Neurosurg 96 [Suppl 3]:285–291

    Google Scholar 

  62. Hulbert RJ, Moulton RJ (2002) Why do you prescribe methylprednisolone for acute spinal cord injury? A canadian perspective and position statement. Can J Neurol Sci 29:236–239

    Google Scholar 

  63. Hunt K, Hallworth S, Smith M (2001) The effects of rigid collar placement on intracranial and cerebral perfusion pressures. Anaesthesia 56:511–513

    Article  Google Scholar 

  64. Kanz KG, Sturm JA, Mutschler W, AG Notfall der DGU (2002) Algorithmen für die präklinische Versorgung von Polytrauma. Unfallchirurg 105:1007–1014

    Article  CAS  PubMed  Google Scholar 

  65. Keller C, Brimacombe J, Keller K (1999) Pressures exerted against the cervical vertebrae by the standard and intubating laryngeal mask airways: a randomized, controlled, cross-over study in fresh cadavers. Anesth Analg 89:1296–1300

    CAS  PubMed  Google Scholar 

  66. Keul W, Bernhard M, Völkl A, Gust R, Gries A (2004) Methoden des Atemwegsmanagements in der präklinischen Notfallmedizin. Anaesthesist 53:978–992

    Article  Google Scholar 

  67. Kreimeier U, Messmer K (2002) Small-volume resuscitation: from experimental evidence to clinical routine. Advantages and disadvantages of hypertonic solutions. Acta Anaesthesiol Scand 46:625–638

    Article  CAS  PubMed  Google Scholar 

  68. Kwan I, Bunn F, Roberts I (2001) Spinal immobilisation for trauma patients. Cochrane Database Syst Rev CD002803

  69. Latorre F de, Nolan J, Robertson C, Chamberlain D, Baskett P (2001) European Resuscitation Council Guidelines 2000 for Adult Advanced Life Support. A statement from the Advanced Life Support Working Group and approved by the Executive Committee of the European Resuscitation Council. Resuscitation 48:211–221

    Article  PubMed  Google Scholar 

  70. Legos JJ, Gritman KR, Tuma RF, Young WF (2001) Coadministration of methylprednisolone with hypertonic saline solution improves overall neurological function and survival rates in a chronic model of spine cord injury. Neurosurgery 49:1427–1433

    Article  Google Scholar 

  71. Lennarson PJ, Smith D, Todd MM et al. (2000) Segmental cervical spine motion during orotracheal intubation of the intact and injured spine with and without external stabilization. J Neurosurg 92 [Suppl 2]:201–206

    Google Scholar 

  72. Lenz C, Rebel A, Waschke KF (1997) Infusionstherapie in der Neuroanästhesie. Anaesthesiol Intensivmed 3:120–134

    Google Scholar 

  73. Lewis RJ (2004) Prehospital care of the multiple injured patient—The challenge of figuring out what works. JAMA 291:1382–1384

    Article  Google Scholar 

  74. Li M, Ona VO, Chen M et al. (2000) Functional role and therapeutic implications of neuronal caspase-1 and -3 in a mouse model of traumatic spinal cord injury. Neuroscience 99:333–342

    Google Scholar 

  75. Lintott P, Hafez HM, Stansby G (1998) Spinal cord complications of thoracoabdominal aneurysm surgery. Br J Surg 85:5–15

    Article  Google Scholar 

  76. Lu P, Blesch A, Tuszynski MH (2001) Neurotrophism without neurotropism: BDNF promotes survival but not growth of lesioned corticospinal neurons. J Comp Neurol 436:456–470

    Article  Google Scholar 

  77. Maroon JC, Abla AA (1987) Classification of acute spinal cord injury, neurological evaluation, and neurosurgical considerations. Crit Care Clin 3:655–677

    Google Scholar 

  78. Martins F, Freitas F, Martins L, Dartigues JF, Barat M (1998) Spinal cord injuries—Epidemiology in Portugal’s central region. Spinal Cord 36:574–578

    Article  Google Scholar 

  79. Maynard FM, Bracken MB, Creasey G et al. (1997) International standards for neurological and functional classification of spinal cord injury. American Spinal Injury Association. Spinal Cord 35:266–274

    PubMed  Google Scholar 

  80. McMichan JC, Michel L, Westbrook PR (1980) Pulmonary dysfunction following traumatic quadriplegia. Recognition, prevention, and treatment. JAMA 243:528–531

    Article  Google Scholar 

  81. Michael DB, Guyot DR, Darmody WR (1989) Coincidence of head and cervical spine injury. J Neurotrauma 6:177–189

    Google Scholar 

  82. Moskopp D, Boker DK, Kurthen M, Solymosi L, Elatan E (1990) Concomitant vertebral trauma in patients with craniocerebral injuries. 34 consecutive patients over 3 years. Unfallchirurg 93:120–126

    Google Scholar 

  83. Muckart DJ, Bhagwanjee S, Merwe R van der (1997) Spinal cord injury as a result of endotracheal intubation in patients with undiagnosed cervical spine fractures. Anesthesiology 87:418–420

    Article  Google Scholar 

  84. Nesathurai S (1998) Steroids and spinal cord injury: revisiting the NASCIS 2 and NASCIS 3 trials. J Trauma 45:1088–1093

    Google Scholar 

  85. Nobile-Orazio E, Carpo M, Scarlato G (1994) Gangliosides—Their role in clinical neurology. Drugs 47:576–585

    Google Scholar 

  86. Nolan J (2001) Fluid resuscitation for the trauma patient. Resuscitation 48:57–69

    Article  CAS  PubMed  Google Scholar 

  87. Nolan JP, Parr MJA (1997) Aspects of resuscitation in trauma. Br J Anaesth 79:226–240

    CAS  PubMed  Google Scholar 

  88. Ozawa H, Keane RW, Marcillo AE, Diaz PH, Dietrich WD (2002) Therapeutic strategies targeting caspase inhibition following spinal cord injury in rats. Exp Neurol 177:306–313

    Article  Google Scholar 

  89. Padosch SA, Vogel P, Böttiger BW (2002) Neuronale Apoptose nach zerebraler Ischämie. Grundlagen, Pathophysiologie und Interventionsmöglichkeiten. Anaesthesist 50:905–920

    Article  Google Scholar 

  90. Papadopoulos SM (1992) Spinal cord injury. Curr Opin Neurol Neurosurg 5:554–557

    Google Scholar 

  91. Podolsky S, Baraff LJ, Simon RR, Hoffman JR, Larmon B, Ablon W (1983) Efficacy of cervical spine immobilization methods. J Trauma 23:461–465

    Google Scholar 

  92. Qiu J, Cai D, Dai H et al. (2002) Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 34:895–903

    Article  Google Scholar 

  93. Raisman G (2001) Olfactory ensheathing cells—Another miracle cure for spinal cord injury? Nat Rev Neurosci 2:369–375

    Article  CAS  PubMed  Google Scholar 

  94. Ramon-Cueto A, Plant GW, Avila J, Bunge MB (1998) Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. J Neurosci 18:3803–3815

    Google Scholar 

  95. Rapalino O, Lazarov-Spiegler O, Agranov E et al. (1998) Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 4:814–821

    Article  Google Scholar 

  96. Raphael JH, Chotai R (1994) Effects of cervical collar on cerebrospinal fluid pressure. Anaesthesia 49:437–439

    Google Scholar 

  97. Rovlias A, Kotsou S (2000) The influence of hyperglycemia on neurological outcome in patients with severe head injury. Neurosurgery 46:335–342

    Article  Google Scholar 

  98. Sagen J (2003) Cellular therapies for spinal cord injury: what will the FDA need to approve moving from the laboratory to the human? J Rehabil Res Dev 40:71–79

    Google Scholar 

  99. Sauerland S, Maegele M (2004) A CRASH landing in severe head injury. Lancet 364:1291–1292

    Article  Google Scholar 

  100. Sawin PD, Todd MM, Traynelis VC et al. (1996) Cervical spine motion with direct laryngoscopy and orotracheal intubation. An in vivo cinefluoroscopic study of subjects without cervical abnormality. Anesthesiology 85:26–36

    Article  Google Scholar 

  101. Schnell L, Schwab ME (1990) Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343:269–272

    Article  Google Scholar 

  102. Schwab JM, Brechtel K, Mueller CA, Kaps HP, Meyermann R, Schluesener HJ (2004) Akute Rückenmarksverletzung: experimentelle Strategien als Basis zukünftiger Behandlungen. Dtsch Arztebl 101:A1422–1434

    Google Scholar 

  103. Schwerdtfeger K, Steudel WI, Pitzen T, Mautes AEM (2001) Spinales Trauma—Epidemiologie, Versorgungsalgorithmus, Behandlung und Prognose. Intensivmedizin 41:71–80

    Article  Google Scholar 

  104. Section on Disorders of the Spine and Peripheral Nerves of the American Association of Neurological Surgeons and the Congress of Neurological Surgeons (2002) Guidelines for Management of acute cervical spinal injuries—Introduction. Neurosurgery 50 [Suppl 3]:S1

  105. Section on Disorders of the Spine and Peripheral Nerves of the American Association of Neurological Surgeons and the Congress of Neurological Surgeons (2002) Guidelines for management of acute cervical spinal injuries. Chapter 1: Cervical spine immobilization before admission to the hospital. Neurosurgery 50 [Suppl 3]:S7–17

  106. Section on Disorders of the Spine and Peripheral Nerves of the American Association of Neurological Surgeons and the Congress of Neurological Surgeons (2002) Guidelines for management of acute cervical spinal injuries. Chapter 8: Blood pressure management after acute spinal cord injury. Neurosurgery 50 [Suppl 3]:S58–62

  107. Section on Disorders of the Spine and Peripheral Nerves of the American Association of Neurological Surgeons and the Congress of Neurological Surgeons (2002) Guidelines for management of acute cervical spinal injuries. Chapter 9: Pharmacological therapy after acute cervical spinal cord injury. Neurosurgery 50 [Suppl 3]:S63–72

  108. Sekhon LHS, Fehlings MG (2001) Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine 26 [Suppl 24]:S2–12

  109. Short D (2001) Is the role of steroids in acute spinal cord injury now resolved? Curr Opin Neurol 14:759–763

    Article  CAS  PubMed  Google Scholar 

  110. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156

    Article  Google Scholar 

  111. Slack RS, Shucart W (1994) Respiratory dysfunction associated with traumatic injury to the central nervous system. Clin Chest Med 15:739–749

    Google Scholar 

  112. Sonntag VK, Douglas RA (1990) Management of spinal cord trauma. Neurosurg Clin North Am 1:729–750

    Google Scholar 

  113. Spera PA, Arfors KE, Vasthare US, Tuma RF, Young WF (1998) Effect of hypertonic saline on leukocyte activity after spinal cord injury. Spine 23:2444–2448

    Article  Google Scholar 

  114. Spera PA, Vasthare US, Tuma RF, Young WF (2000) The effects of hypertonic saline on spinal cord blood flow following compression injury. Acta Neurochir (Wien) 142:811–817

    Article  Google Scholar 

  115. Stevens RD, Bhardwaj A, Kirsch JR, Mirski MA (2003) Critical care and perioperative management in traumatic spinal cord injury. J Neurosurg Anesthesiol 15:215–229

    Article  Google Scholar 

  116. Stirling DP, Khodarahmi K, Liu J et al. (2004) Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci 24:2182–2190

    Article  Google Scholar 

  117. Surkin J, Gilbert BJ, Harkey HL 3rd, Sniezek J, Currier M (2000) Spinal cord injury in Mississippi. Findings and evaluation, 1992–1994. Spine 25:716–721

    Article  Google Scholar 

  118. Tascano J (1988) Prevention of neurological deterioration before admission to a spinal cord injury unit. Paraplegia 26:143–150

    Google Scholar 

  119. Tator CH, Fehlings MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanism. J Neurosurg 75:15–26

    CAS  PubMed  Google Scholar 

  120. Tator CH, Koyanagi I (1997) Vascular mechanisms in the pathophysiology of human spinal cord injury. J Neurosurg 86:483–492

    Google Scholar 

  121. Thurman DJ, Burnett CL, Jeppson L, Beaudoin DE, Sniezek JE (1994) Surveillance of spinal cord injuries in Utah, USA. Paraplegia 32:665–669

    Google Scholar 

  122. Vaccaro AR, An HS, Betz RR, Cotler JM, Balderston RA (1997) The management of acute spinal trauma: prehospital and in-hospital emergency care. Instr Course Lect 46:113–125

    Google Scholar 

  123. Vale FL, Burns J, Jackson AB, Hadley MN (1997) Combined medical and surgical treatment after acute spinal cord injury: results of a prospective pilot study to assess the merits of aggressive medical resuscitation and blood pressure management. J Neurosurg 87:239–246

    Google Scholar 

  124. Vassar MJ, Perry CA, Gannaway WL, Holcroft JW (1991) 7.5% sodium chloride/dextran for resuscitation of trauma patients undergoing helicopter transport. Arch Surg 126:1065–1072

    Google Scholar 

  125. Velmahos GC, Toutouzas K, Chan L et al. (2003) Intubation after cervical spinal cord injury: to be done selectively or routinely? Am Surg 69:891–894

    PubMed  Google Scholar 

  126. Vivo MJ de (1997) Causes and costs of spinal cord injury in the United States. Spinal Cord 35:809–813

    Article  Google Scholar 

  127. Vivo MJ de, Kartus PL, Stover SL, Fine PR (1990) Benefits of early admission to an organised spinal cord care system. Paraplegia 28:545–555

    Google Scholar 

  128. Wang KC, Kim JA, Sivasankaran R, Segal R, He Z (2002) P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature 420:74–78

    Article  Google Scholar 

  129. Weber F, Bock WJ (1997) Notfalltherapie spinaler Traumen. Intensivmedizin 34:725–732

    Article  Google Scholar 

  130. Weihe W (2004) Von der Wahrscheinlichkeit des Irrtums—Ein „Galileischer Dialog“ über ein statistisches Problem. Dtsch Arztebl 101:A834–838

    Google Scholar 

  131. Wick M, Ekkernkamp A, Muhr G (1997) Epidemiologie des Polytraumas. Chirurg 68:1053–1058

    Article  CAS  PubMed  Google Scholar 

  132. Young W, Flamm ES, Demopoulos HB, Tomasula JJ, Crescito V de (1981) Effect of naloxone on posttraumatic ischemia in experimental spinal contusion. J Neurosurg 55:209–219

    Google Scholar 

  133. Yu CG, Marcillo AE, Fairbanks CA, Wilcox GL, Yezierski RP (2000) Agmatine improves locomotor function and reduces tissue damage following spinal cord injury. Neuroreport 11:3203–3207

    Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bernhard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernhard, M., Gries, A., Kremer, P. et al. Präklinisches Management von Rückenmarkverletzungen. Anaesthesist 54, 357–376 (2005). https://doi.org/10.1007/s00101-005-0807-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-005-0807-4

Schlüsselwörter

Keywords

Navigation