Skip to main content
Log in

Volatile Anästhetika

  • Weiterbildung · Zertifizierte Fortbildung
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Auch heute ist die Suche nach dem idealen Inhalationsanästhetikum nicht abgeschlossen. Die Mitte der 90er-Jahre in Deutschland eingeführten Inhalationsanästhetika Desfluran und Sevofluran zeichnen sich durch niedrige Blut-Gas-Verteilungskoeffizienten aus. Dies spiegelt sich in günstigen pharmakokinetischen Eigenschaften wieder. Hohe hämodynamische Stabilität ist besonders für Sevofluran zu erwähnen. Als Nachteil einiger Substanzen ist eine potenzielle Organtoxizität zu nennen. Enfluran und Sevofluran zeigen hypothetisch nephrotoxische Eigenschaften. Abbauprodukte im Absorberkalk sind vor allem für Sevofluran (Compound-A-Bildung) sowie Desfluran (CO-Bildung) erwähnenswert. Gegenüber intravenösen Anästhetika zeichnen sich volatile Anästhetika durch kardio- und zerebroprotektive Eigenschaften aus.

Abstract

None of the currently available inhaled anesthetics has all of the properties of an “ideal” inhaled agent. The exceptionally low solubility of desflurane and sevoflurane offers a significantly greater precision of control over maintenance of anesthesia and a potential for a more rapid recovery from anesthesia than other inhaled anesthetics. Sevoflurane appears to offer some advantages regarding cardiovascular stability. Products of metabolism or degradation can be associated with potential organ-specific toxic effects. Renal toxicity is discussed for enflurane and sevoflurane. Breakdown products of volatile agents with carbon dioxide absorbents have to be mentioned especially for sevoflurane (compound A) and desflurane (CO). In contrast to intravenous anesthetics, volatile anesthetics are associated with cardio- and cerebroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Burke TR, Branchflower RV, Lees DE, Pohl LR (1981) Mechanism of defluorination of enflurane. Identification of an organic metabolite in rate and man. Drug Metab Dispos 9:19–24

    CAS  PubMed  Google Scholar 

  2. Campagna JA, Miller KW, Forman SA (2003) Mechanisms of actions of inhaled anesthetics. N Engl J Med 348:2110–2124

    Article  CAS  PubMed  Google Scholar 

  3. Carpenter RL, Eger EI II, Johnson BH et al. (1986) Pharmacokinetics of inhaled anesthetics in humans: measurements during and after the simultaneous administration of enflurane, halothane, isoflurane, methoxyflurane, and nitrous oxide. Anesth Analg 65:575–582

    CAS  PubMed  Google Scholar 

  4. Conzen PF, Kharasch ED, Czerner SF et al. (2002) Low-flow Sevoflurane compared with low-flow isoflurane anesthesia in Patients with stable renal insufficiency. Anesthesiology 97:578–584

    Article  CAS  PubMed  Google Scholar 

  5. Engelhard K, Werner C, Reeker W et al. (1999) Desflurane and isoflurane improve neurologic outcome after incomplete cerebralischemia in rats. Br J Anaesth 83:415–421

    CAS  PubMed  Google Scholar 

  6. Eger EI II (1994) New inhaled anesthetics. Anesthesiology 80:906–922

    CAS  PubMed  Google Scholar 

  7. Fang ZX, Eger EI, Laster MJ et al. (1995) Carbon monoxide production from degradation of desflurane, enflurane, isoflurane, halothane, and sevoflurane by soda lime and baralyme. Anesth Analg 89:1187–1193

    Google Scholar 

  8. Förster H, Behne M, Warnken UH et al. (2000) Die Anwendung von Lithiumhydroxid als Kohlendioxidabsorbens verhindert das Entstehen von Compound A während Sevoflurananästhesie. Anaesthesist 49:106–112

    Article  PubMed  Google Scholar 

  9. Franks NP, Lieb WR (1994) Molecular and cellular mechanisms of general anaesthesia. Nature 367:607–614

    CAS  PubMed  Google Scholar 

  10. Frink EJ, Malan TP, Isner RJ et al. (1994) Renal concentrating function with prolonged sevoflurane or enflurane anesthesia in volunteers. Anesthesiology 80:1019–1025

    CAS  PubMed  Google Scholar 

  11. Goldfarb G, Debaene B, Ang ET et al. (1990) Hepatic blood flow in humans during isoflurane-N2O and halothane-N2O anesthesia. Anesth Analg 71:349–353

    CAS  PubMed  Google Scholar 

  12. Hitt BA, Mazze RI, Cousins MJ et al. (1974) Metabolism of isoflurane in Fischer 344 rats and man. Anesthesiology 40:62–67

    CAS  PubMed  Google Scholar 

  13. Kharasch ED, Conzen P, Michalowski P et al. (2003) Correspondence. Anesthesiology 99:752–754

    Article  PubMed  Google Scholar 

  14. Kirson ED, Yaari Y, Perouansky M (1998) Presynaptic and postsynaptic actions of halothane at glutamatergic synapses in the mouse hippocampus. Br J Pharmacol 124:1607–1614

    CAS  PubMed  Google Scholar 

  15. Kotrly KJ, Ebert TJ, Vucins E et al. (1984) Baroreceptor reflex control of heart rate during isoflurane in humans. Anesthesiology 60:173–179

    CAS  PubMed  Google Scholar 

  16. Mazze RI, Sievenpiper TS, Stevenson J (1984) Renal effects of enflurane and halothane in patients with abnormal renal function. Anesthesiology 60:161–163

    CAS  PubMed  Google Scholar 

  17. Mihic SJ, Ye Q, Wick MJ et al. (1997) Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature 389:385–389

    CAS  PubMed  Google Scholar 

  18. Miura Y, Grocott HP, Bart RD et al. (1998) Differential effects of anesthetiic agents on outcome from near-complete but not incomplete global ischemia in the rat. Anesthesiology 89:391–400

    Article  CAS  PubMed  Google Scholar 

  19. Murray JM, Renfrew CW, Bedi A et al. (1999) Amsorb a new carbon dioxide absorbent for use in anesthetic breathing systems. Anesthesiology 91:1342–1348

    Article  CAS  PubMed  Google Scholar 

  20. Werner C, Mollenberg O, Kochs E, Schulte-am-Esch J (1995) Sevoflurane improves neurological outcome after incomplete cerebral ischaemia in rats. Br J Anaesth 75:756–760

    CAS  PubMed  Google Scholar 

  21. Yasuda N, Lockhart SH, Eger EI II et al. (1991) Kinetics of desflurane, isoflurane, and halothane in humans. Anesthesiology 74:489–498

    CAS  PubMed  Google Scholar 

  22. Yasuda N, Lockhart SH, Eger EI II et al. (1991) Comparison of kinetics of sevoflurane and isoflurane in humans. Anesth Analg 72:316–324

    CAS  PubMed  Google Scholar 

  23. Zaugg M, Lucchinetti E, Garcia C et al. (2003) Anaesthetics and cardiac preconditioning. Part II. Clinical implications. Br J Anaesth 91:566–576

    Article  CAS  PubMed  Google Scholar 

  24. Zaugg M, Lucchinetti E, Uecker M et al. (2003) Anaesthetics and cardiac preconditioning. Part I. Signalling and cytoprotective mechanisms. Br J Anaesth 91:551–565

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Keine Angaben

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Loscar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loscar, M., Conzen, P. Volatile Anästhetika. Anaesthesist 53, 183–198 (2004). https://doi.org/10.1007/s00101-003-0632-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-003-0632-6

Schlüsselwörter

Keywords

Navigation