Skip to main content
Log in

Lessons in obesity from transgenic animals

  • Review Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Many genetic manipulations have created models of obesity, leanness or resistance to dietary obesity in mice, often providing insights into molecular mechanisms that affect energy balance, and new targets for anti-obesity drugs. Since many genes can affect energy balance in mice, polymorphisms in many genes may also contribute to obesity in humans, and there may be many causes of primary leptin resistance. Secondary leptin resistance (due to high leptin levels) can be investigated by combining the ob mutation with other obesity genes. Some transgenic mice have failed to display the expected phenotype, or have even been obese when leanness was expected. Compensatory changes in the expression of other genes during development, or opposing influences of the gene on energy balance, especially in global knockout mice, may offer explanations for such findings. Obesity has been separated from insulin resistance in some transgenic strains, providing new insights into the mechanisms that usually link these phenotypes. It has also been shown that in some transgenic mice, obesity develops without hyperphagia, or leanness without hypophagia, demonstrating that generalised physiological explanations for obesity in individual humans may be inappropriate. Possibly the most important transgenic model of obesity so far created is the Type 1 11ß-hydroxysteroid dehydrogenase over-expressing mouse, since this models the metabolic syndrome in humans. The perspectives into obesity offered by transgenic mouse models should assist clinical researchers in the design and interpretation of their studies in human obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bultman S.J., Michaud E.J., Woychik R.P. Molecular characterization of the mouse agouti locus. Cell 1992, 71: 1195–1204.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Y., Proenca R., Maffei M. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 1994, 372: 425–432.

    Article  CAS  PubMed  Google Scholar 

  3. Inui A. Transgenic approach to the study of body weight regulation. Pharmacol. Rev. 2000, 52: 35–61.

    CAS  PubMed  Google Scholar 

  4. Tschop M., Heiman M.L. Rodent obesity models: an overview. Exp. Clin. Endocrinol. Diabetes 2001, 109: 307–319.

    Article  CAS  PubMed  Google Scholar 

  5. Beck B. KO’s and organisation of peptidergic feeding behavior mechanisms. Neurosci. Biobehav. Rev. 2001, 25: 143–1580.

    Article  CAS  PubMed  Google Scholar 

  6. Halford J.C., Blundell J.E. Separate systems for serotonin and leptin in appetite control. Ann. Med. 2000, 32: 222–232.

    Article  CAS  PubMed  Google Scholar 

  7. Bickerdike M.J., Vickers S.P., Dourish C.T. 5-HT2C receptor modulation and the treatment of obesity. Diabetes Obes. Metab. 1999, 1: 207–214.

    Article  CAS  PubMed  Google Scholar 

  8. Bruning J.C., Gautam D., Burks D.J. et al. Role of brain insulin receptor in control of body weight and reproduction. Science 2000, 289: 2122–2125.

    Article  CAS  PubMed  Google Scholar 

  9. Klaman L.D., Boss O., Peroni O.D. et al. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol. Cell. Biol. 2000, 20: 5479–5489.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Lowell B.B. Using gene knockout and transgenic techniques to study the physiology and pharmacology of beta3- adrenergic receptors. Endocr. J. 1998, 45: S9–S13.

    Article  CAS  PubMed  Google Scholar 

  11. Cederberg A., Gronning L.M., Ahren B., Tasken K., Carlsson P., Enerback S. FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and dietinduced insulin resistance. Cell 2001, 106: 563–573.

    Article  CAS  PubMed  Google Scholar 

  12. Martinez-Botas J., Anderson J.B., Tessier D. et al. Absence of perilipin results in leanness and reverses obesity in Lepr(db/db) mice. Nat. Genet. 2000, 26: 474–479.

    Article  CAS  PubMed  Google Scholar 

  13. Abu-Elheiga L., Matzuk M.M., Abo-Hashema K.A., Wakil S.J. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 2001, 291: 2613–2616.

    Article  CAS  PubMed  Google Scholar 

  14. Chen H.C., Farese R.V. Jr. DGAT and triglyceride synthesis: a new target for obesity treatment? Trends Cardiovasc. Med. 2000, 10: 188–192.

    Article  CAS  PubMed  Google Scholar 

  15. Katz E.B., Burcelin R., Tsao T.S., Stenbit A.E., Charron M.J. The metabolic consequences of altered glucose transporter expression in transgenic mice. J. Mol. Med. 1996, 74: 639–652.

    Article  CAS  PubMed  Google Scholar 

  16. Dalgaard L.T., Pedersen O. Uncoupling proteins: functional characteristics and role in the pathogenesis of obesity and Type II diabetes. Diabetologia 2001, 44: 946–965.

    Article  CAS  PubMed  Google Scholar 

  17. Ritter R.C., Covasa M., Matson C.A. Cholecystokinin: proofs and prospects for involvement in control of food intake and body weight. Neuropeptides 1999, 33: 387–399.

    Article  CAS  PubMed  Google Scholar 

  18. Dong Z.M., Gutierrez-Ramos J.C., Coxon A., Mayadas T.N., Wagner D.D. A new class of obesity genes encodes leukocyte adhesion receptors. Proc. Natl. Acad. Sci. USA 1997, 94: 7526–7530.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Anand A., Chada K. In vivo modulation of Hmgic reduces obesity. Nat. Genet. 2000, 24: 377–380.

    Article  CAS  PubMed  Google Scholar 

  20. Tsukiyama-Kohara K., Poulin F., Kohara M. et al. Adipose tissue reduction in mice lacking the translational inhibitor 4E-BP1. Nat. Med. 2001, 7: 1128–1132.

    Article  CAS  PubMed  Google Scholar 

  21. Yamada M., Miyakawa T., Duttaroy A. et al. Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature 2001, 410: 207–212.

    Article  CAS  PubMed  Google Scholar 

  22. Good D.J., Porter F.D., Mahon K.A., Parlow A.F., Westphal H., Kirsch I.R. Hypogonadism and obesity in mice with a targeted deletion of the Nhlh2 gene. Nat. Genet. 1997, 15: 397–401.

    Article  CAS  PubMed  Google Scholar 

  23. Michaud J.L., Boucher F., Melnyk A. et al. Sim1 haploinsufficiency causes hyperphagia, obesity and reduction of the paraventricular nucleus of the hypothalamus. Hum. Mol. Genet. 2001, 10: 1465–1473.

    Article  CAS  PubMed  Google Scholar 

  24. Willie J.T., Chemelli R.M., Sinton C.M., Yanagisawa M. To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu. Rev. Neurosci. 2001, 24: 429–458.

    Article  CAS  PubMed  Google Scholar 

  25. Hara J., Beuckmann C.T., Nambu T. et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 2001, 30: 345–354.

    Article  CAS  PubMed  Google Scholar 

  26. Cai X.J., Liu X.H., Evans M. et al. Orexins and feeding: special occasions or everyday occurrence? Regul. Pept. 2002, 104: 1–9.

    Article  CAS  PubMed  Google Scholar 

  27. Clapham J.C., Arch J.R.S., Tadayyon M. Anti-obesity drugs: A critical review of current therapies and future opportunities. Pharmacol. Ther. 2001, 89: 81–121.

    Article  CAS  PubMed  Google Scholar 

  28. Heal D.J., Aspley S., Prow M.R., Jackson H.C., Martin K.F., Cheetham S.C. Sibutramine: a novel anti-obesity drug. A review of the pharmacological evidence to differentiate it from d-amphetamine and d-fenfluramine. Int. J. Obes. Relat. Metab. Disord. 1998, 22: S18–28; discussion S29.

    CAS  PubMed  Google Scholar 

  29. Lambert P.D., Anderson K.D., Sleeman M.W. et al. Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin- resistant obesity. Proc. Natl. Acad. Sci. USA 2001, 98: 4652–4657.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Vaisse C., Clement K., Durand E., Hercberg S., Guy-Grand B., Froguel P. Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J. Clin. Invest. 2000, 106: 253–262.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Brockmann G.A., Bevova M.R. Using mouse models to dissect the genetics of obesity. Trends Genet. 2002, 18: 367–376.

    Article  CAS  PubMed  Google Scholar 

  32. Clement K., Vaisse C., Manning B.S. et al. Genetic variation in the beta 3-adrenergic receptor and an increased capacity to gain weight in patients with morbid obesity. N. Engl. J. Med. 1995, 333: 352–354.

    Article  CAS  PubMed  Google Scholar 

  33. Arch J.R.S., Stock M.J., Trayhurn P. Leptin resistance in obese humans Does it exist and what does it mean? Int. J. Obesity. Relat. Metab Disord. 1998, 22: 1159–1163.

    Article  CAS  Google Scholar 

  34. Heymsfield S.B., Greenberg A.S., Fujioka K. et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA 1999, 282: 1568–1575.

    Article  CAS  PubMed  Google Scholar 

  35. Mantzoros C.S., Frederich R.C., Qu D., Lowell B.B., Maratos-Flier E., Flier J.S. Severe leptin resistance in brown fat-deficient uncoupling protein promoter-driven diphtheria toxin A mice despite suppression of hypothalamic neuropeptide Y and circulating corticosterone concentrations. Diabetes 1998, 47: 230–238.

    Article  CAS  PubMed  Google Scholar 

  36. Harris R.B., Mitchell T.D., Mynatt R.L. Leptin responsiveness in mice that ectopically express agouti protein. Physiol. Behav. 2002, 75: 159–167.

    Article  CAS  PubMed  Google Scholar 

  37. Marsh D.J., Hollopeter G., Huszar D. et al. Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nat. Genet. 1999, 21: 119–122.

    Article  CAS  PubMed  Google Scholar 

  38. Boston B.A., Blaydon K.M., Varnerin J., Cone R.D. Independent and additive effects of central POMC and leptin pathways on murine obesity. Science 1997, 278: 1641–1644.

    Article  CAS  PubMed  Google Scholar 

  39. Jacobson L. Middle-aged C57BL/6 mice have impaired responses to leptin that are not improved by calorie restriction. Am. J. Physiol. 2002, 282: E786–E793.

    Article  CAS  Google Scholar 

  40. Erickson J.C., Clegg K.E., Palmiter R.D. Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature 1996, 381: 415–421.

    Article  CAS  PubMed  Google Scholar 

  41. Hollopeter G., Erickson J.C., Seeley R.J., Marsh D.J., Palmiter R.D. Response of neuropeptide Y-deficient mice to feeding effectors. Regul. Pept. 1998, 75-76: 383–389.

    Article  CAS  PubMed  Google Scholar 

  42. Shimada M., Tritos N.A., Lowell B.B., Flier J.S., Maratos- Flier E. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 1998, 396: 670–674.

    Article  CAS  PubMed  Google Scholar 

  43. Kalra S.P., Dube M.G., Pu S., Xu B., Horvath T.L., Kalra P.S. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr. Rev. 1999, 20: 68–100.

    CAS  PubMed  Google Scholar 

  44. Kaga T., Inui A., Okita M. et al. Modest overexpression of neuropeptide Y in the brain leads to obesity after high-sucrose feeding. Diabetes 2001, 50: 1206–1210.

    Article  CAS  PubMed  Google Scholar 

  45. Erickson J.C., Hollopeter G., Palmiter R.D. Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y. Science 1996, 274: 1704–1707.

    Article  CAS  PubMed  Google Scholar 

  46. Wieland H.A., Hamilton B.S., Krist B., Doods H.N. The role of NPY in metabolic homeostasis: implications for obesity therapy. Expert Opin. Investig. Drugs 2000, 9: 1327–1346.

    Article  CAS  PubMed  Google Scholar 

  47. Pedrazzini T., Seydoux J., Kunstner P. et al. Cardiovascular response, feeding behavior and locomotor activity in mice lacking the NPY Y1 receptor. Nat. Med. 1998, 4: 722–726.

    Article  CAS  PubMed  Google Scholar 

  48. Kushi A., Sasai H., Koizumi H., Takeda N., Yokoyama M., Nakamura M. Obesity and mild hyperinsulinemia found in neuropeptide Y-Y1 receptor- deficient mice. Proc. Natl. Acad. Sci. USA 1998, 95: 15659–15664.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Marsh D.J., Hollopeter G., Kafer K.E., Palmiter R.D. Role of the Y5 neuropeptide Y receptor in feeding and obesity. Nat. Med. 1998, 4: 718–7210.

    Article  CAS  PubMed  Google Scholar 

  50. Hara J., Beuckmann C.T., Nambu T. et al. Genetic ablation of orexin neurones in mice results in narcolepsy, hypophagia and obesity. Neuron 2001, 30: 345–354.

    Article  CAS  PubMed  Google Scholar 

  51. Ferrannini E., Camastra S. Relationship between impaired glucose tolerance, non-insulin-dependent diabetes mellitus and obesity. Eur. J. Clin. Invest. 1998, 28 (2): 3–7.

    Article  PubMed  Google Scholar 

  52. Werner A.L., Travaglini M.T. A review of rosiglitazone in type 2 diabetes mellitus. Pharmacotherapy 2001, 21: 1082–1099.

    Article  CAS  PubMed  Google Scholar 

  53. Spiegelman B.M. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 1998, 47: 507–514.

    Article  CAS  PubMed  Google Scholar 

  54. Chao L., Marcus-Samuels B., Mason M.M. et al. Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones. J. Clin. Invest. 2000, 106: 1221–1228.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Rocchi S., Picard F., Vamecq J. et al. A unique PPARgamma ligand with potent insulin-sensitizing yet weak adipogenic activity. Mol. Cell. 2001, 8: 737–747.

    Article  CAS  PubMed  Google Scholar 

  56. Uysal K.T., Scheja L., Wiesbrock S.M., Bonner-Weir S., Hotamisligil G.S. Improved glucose and lipid metabolism in genetically obese mice lacking aP2. Endocrinology 2000, 141: 3388–3396.

    Article  CAS  PubMed  Google Scholar 

  57. Shepherd P.R., Gnudi L., Tozzo E., Yang H., Leach F., Kahn B.B. Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. J. Biol. Chem. 1993, 268: 22243–22246.

    CAS  PubMed  Google Scholar 

  58. Gibbs E.M., Stock J.L., McCoid S.C. et al. Glycemic improvement in diabetic db/db mice by overexpression of the human insulin-regulatable glucose transporter (GLUT4). J. Clin. Invest. 1995, 95: 1512–1518.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Marshall B.A., Hansen P.A., Ensor N.J., Ogden M.A., Mueckler M. GLUT-1 or GLUT-4 transgenes in obese mice improve glucose tolerance but do not prevent insulin resistance. Am. J. Physiol. 1999, 276: E390–E400.

    CAS  PubMed  Google Scholar 

  60. Katz E.B., Stenbit A.E., Hatton K., DePinho R., Charron M.J. Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature 1995, 377: 151–155.

    Article  CAS  PubMed  Google Scholar 

  61. Moitra J., Mason M.M., Olive M. et al. Life without white fat: a transgenic mouse. Genes Dev. 1998, 12: 3168–3181.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Shimomura I., Hammer R.E., Richardson J.A. et al. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev. 1998, 12: 3182–3194.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Hirose H., Kawai T., Yamamoto Y. et al. Effects of pioglitazone on metabolic parameters, body fat distribution, and serum adiponectin levels in Japanese male patients with type 2 diabetes. Metabolism 2002, 51: 314–317.

    Article  CAS  PubMed  Google Scholar 

  64. Kraegen E.W., Cooney G.J., Ye J., Thompson A.L. Triglycerides, fatty acids and insulin resistance—hyperinsulinemia. Exp. Clin. Endocrinol. Diabetes 2001, 109: S516–S526.

    Article  CAS  PubMed  Google Scholar 

  65. Flatt J.P. How NOT to approach the obesity problem. Obes. Res. 1997, 5: 632–633.

    Article  CAS  PubMed  Google Scholar 

  66. Bray G.A. Reciprocal relation of food intake and sympathetic activity: experimental observations and clinical implications. Int. J. Obes. Relat. Metab. Disord. 2000, 24 (2): S8–S17.

    Article  CAS  PubMed  Google Scholar 

  67. Chen A.S., Marsh D.J., Trumbauer M.E. et al. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat. Genet. 2000, 26: 97–102.

    Article  CAS  PubMed  Google Scholar 

  68. James W.P., Davies H.L., Bailes J., Dauncey M.J. Elevated metabolic rates in obesity. Lancet 1978, 1: 1122–1125.

    Article  CAS  PubMed  Google Scholar 

  69. Jebb S.A. The Nutrition Society Medical Lecture. Obesity: from molecules to man. Proc. Nutr. Soc. 1999, 58: 1–14.

    Article  CAS  PubMed  Google Scholar 

  70. Roberts S.B. Abnormalities of energy expenditure and the development of obesity. Obes. Res. 1995, 3: 155s–163s.

    Article  PubMed  Google Scholar 

  71. Prentice A.M., Jebb S.A. Obesity in Britain: gluttony or sloth? BMJ 1995, 311: 437–439.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Lin P.Y., Romsos D.R., Leveille G.A. Food intake, body weight gain, and body composition of the young obese (ob/ob) mouse. J. Nutr. 1977, 107: 1715–1723.

    CAS  PubMed  Google Scholar 

  73. Trayhurn P. Brown adipose tissue and energy balance. In: Trayhurn P. Nicholls D.G. (Eds.), Brown adipose tissue. Edward Arnold, London 1986, p. 299–338.

    Google Scholar 

  74. York D.A. Lessons from animal models of obesity. Endocrinol. Metab. Clin. North. Am. 1996, 25: 781–800.

    Article  CAS  Google Scholar 

  75. Björntorp P., Rosmond R. Obesity and cortisol. Nutrition 2000, 16: 924–936.

    Article  PubMed  Google Scholar 

  76. Seckl J.R., Cleasby M., Nyirenda M.J. Glucocorticoids, 11beta-hydroxysteroid dehydrogenase, and fetal programming. Kidney Int. 2000, 57: 1412–1417.

    Article  CAS  PubMed  Google Scholar 

  77. Masuzaki H., Paterson J., Shinyama H. et al. A transgenic model of visceral obesity and the metabolic syndrome. Science 2001, 294: 2166–2170.

    Article  CAS  PubMed  Google Scholar 

  78. Yu S., Gavrilova O., Chen H. et al. Paternal versus maternal transmission of a stimulatory G-protein alpha subunit knockout produces opposite effects on energy metabolism. J. Clin. Invest. 2000, 105: 615–623.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Ohki-Hamazaki H., Watase K., Yamamoto K. et al. Mice lacking bombesin receptor subtype-3 develop metabolic defects and obesity. Nature 1997, 390: 165–169.

    Article  CAS  PubMed  Google Scholar 

  80. Wallenius V., Wallenius K., Ahren B. et al. Interleukin-6-deficient mice develop mature-onset obesity. Nat. Med. 2002, 8: 75–79.

    Article  CAS  PubMed  Google Scholar 

  81. Tansey J.T., Sztalryd C., Gruia-Gray J. et al. Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to dietinduced obesity. Proc. Natl. Acad. Sci. USA 2001, 98: 6494–6499.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. McPherron A.C., Lee S.J. Suppression of body fat accumulation in myostatin-deficient mice. J. Clin. Invest. 2002, 109: 595–601.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Clapham J.C., Arch J.R., Chapman H. et al. Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature 2000, 406: 415–418.

    Article  CAS  PubMed  Google Scholar 

  84. Murray I., Havel P.J., Sniderman A.D., Cianflone K. Reduced body weight, adipose tissue, and leptin levels despite increased energy intake in female mice lacking acylation-stimulating protein. Endocrinology 2000, 141: 1041–1049.

    CAS  PubMed  Google Scholar 

  85. Razani B., Combs T.P., Wang X.B. et al. Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J. Biol. Chem. 2002, 277: 8635–8647.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. S. Arch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arch, J.R.S. Lessons in obesity from transgenic animals. J Endocrinol Invest 25, 867–875 (2002). https://doi.org/10.1007/BF03344050

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03344050

Key-words

Navigation