Skip to main content
Log in

Stereotaktische einzeitbestrahlung (radiochirurgie) Methodik, indikationen, ergebnisse

Stereotactic radiotherapy (radiosurgery). Methods, indications, results

  • Aktuelles Forum
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Hintergrund

Die stereotaktische Methode bezeichnet ein Verfahren, bei dem ein Punkt mit Hilfe eines Koordinatensystems beschrieben werden kann. Bei der Radiochirurgie wird diese Methode benutzt, um sehr prÄzise eine hohe Einzeldosis zu applizieren. Ziel der Radiochirurgie ist die Zerstörung des Gewebes im Zielvolumen und die Schonung des umliegenden Hirngewebes durch einen steilen Dosisgradienten.

Methoden

Es gibt drei verschiedene Techniken der perkutanen Radiochirurgie: mit Teilchenstrahlen an einem Zyklotron, mit einer schalenförmigen Anordnung von Kobalt-60-Quellen, dem sogenannten Gamma-Knife, und unter Verwendung eines modifizierten Linearbeschleunigers. Aufgrund der weitreichenden Verfügbarkeit und der guten klinschen Erfahrungen wurde die Radiochirurgie am Linearbeschleuniger in den letzten Jahren mit zunehmender HÄufigkeit angewendet. Eine darauf aufbauende Weiterentwicklung ist die fraktionierte stereotaktische PrÄzisionsbestrahlung, bei der der Vorteil der physikalischen PrÄzision mit dem biologischen Vorteil der Fraktionierung verknüpft wird.

Ergebnisse

Es sind nur wenige Indikationen für die stereotaktische Einzeitbestrahlung durch statistisch valide Studien gesichert. Zu diesen zÄhlen die arteriovenösen Malformationen, bei denen über Obliterationsraten von 80% bis 100% berichtet wird bei nur geringer ToxizitÄt. Bei sehr gro\en Angiomen sinkt allerdings die Obliterationswahrscheinlichkeit deutlich ab. Die Ergebnisse der Radiochirurgie bei der Behandlung von Hirnmetastasen sind bezüglich der lokalen Kontrolle von etwa 90% der mikrochirurgischen Exstirpation, gefolgt von einer adjuvanten Bestrahlung, gleichwertig. Inwieweit Patienten von einer adjuvanten Ganzhirnbestrahlung nach Radiochirurgie profitieren, wird derzeit in einer laufenden EORTC-Studie untersucht. Das überleben der Patienten ist im wesentlichen durch eine extrazerebrale Tumorprogression limitiert. Der Stellenwert der stereotaktischen Einzeitbestrahlung von benignen tumorösen Raumforderungen wird derzeit in wissenschaftlichen Studien bei Patienten mit vestibulÄren Schwannomen, Meningeomen, Chordomen und Chondrosarkomen sowie Hypophysenadenomen untersucht. Für diese Anwendungen kommen in der Regel allerdings nur kleine Tumoren in Betracht. Die Grenzen der radiochirurgischen Technik werden bei diesen Tumoren durch das Nekroserisiko der angrenzenden Hirnstrukturen bestimmt, welches durch eine steile Dosis-Volumen-Wirkungsbeziehung gekennzeichnet ist. Neuere Entwicklungen der stereotaktischen Bestrahlung zielen auf die Anwendung von Minimultileafkollimatoren, den Einsatz intensitÄtsmodulierter Bestrahlungstechniken auf Basis inverser BPL-Programme sowie klinische Studien zur extrakraniellen Anwendung stereotaktischer Techniken.

Schlu\folgerungen

Die stereotaktische Einzeitbestrahlung ist ein klinisch etabliertes Behandlungsverfahren von tiefliegenden intrakraniellen Tumoren und arteriovenösen Malformationen. Es stehen heute Methoden zur Verfügung, die eine Optimierung der Dosisanpassung an kompliziert geformte Tumoren sowie fraktionierte stereotaktische Bestrahlungen mit Linearbeschleunigern ermöglichen. Dies hat das therapeutische Potential dieser Technik erheblich erweitert und die Möglichkeit eröffnet, neue Indikationen und auch die extrazerebrale Anwendung in kontrollierten klinischen Studien zu untersuchen.

Background

Stereotaxy is a method to determine a point in the patient’s body by an external coordinate system which is attached to the patient. Radiosurgery uses this method for precise delivery of a high single radiation dose to the patient. The aim is to destroy the tissue in the target and to spare surrounding unaffected normal tissue by a steep dose gradient.

Methods

Three techniques of percutaneous radiosurgery are available: radiosurgery with ion beams with a cyclotron, spherical arrangement of cobalt-60 sources, the so-called Gamma-knife, and an adapted linear accelerator. The availability and the.good clinical experience lead to a wide spread use of linear accelerator for radiosurgery in recent years. A subsequent development is fractionated stereotactic radiotherapy which combines the precision of radiosurgery with the radiobiological advantage of fractionation.

Results

Only a few indications for radiosurgery are proven by statistically valid studies. One of these is the treatment of small arteriovenous malformation, where obliteration rates of 80% to 100% are reported with only minor toxicity. However, the obliteration rate is reduced significantly in large arteriovenous malformations. A local control rate of 90% is obtained after radiosurgery of brain m\tastases which is comparable to the results of microsurgical resection followed by adiuvant whole brain radiotherapy. An ongoing EORTC study evaluates the role of adiuvant whole brain radiotherapy after radiosurgery. The survival of the patients with brain m\tastases is limited by the existence of progressive extracerebral disease. The role of radiosurgery in the treatment of benign tumors is currently evaluated in clinical studies which include: vestibular schwannomas, meningeomas, chordomas and chondrosarcomas and pituitary adenomas. Most of the published studies include only small tumors because radiosurgery is limited by the risk of radionecrosis of adjacent normal tissue, which shows a steep dose volume response relationship. Recent developments of stereotactic radiotherapy include the use of mini-multileaf-collimators and clinical studies on stereotactic radiotherapy of extracranial targets.

Conclusions

Stereotactic irradiation is a well established treatment technique for intracranial tumors and arteriovenous malformations. Methods are available that allow optimization of dose distributions to irregularly shaped tumors for single dose as well as fractionated sterotactic irradiations by linear accelerator. Therefore the therapeutic potential of this technique has increased and enables also the extracerebral application in controlled clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Albert FK, Forsting M, Sartor K, et al. Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis [see comments]. Neurosurgery 1994;34:45–60.

    Article  PubMed  CAS  Google Scholar 

  2. Alexander E, Moriarty TM, Loeffler JS. Radiosurgery for m\tastases. J Neurooncol 1996;27:279–85.

    Article  PubMed  Google Scholar 

  3. Bauer KB, Schlegel W, Boesecke R, et al. Display of organs and isodoses as shaded 3-D objects for 3-D therapy planning, Int J Radiat Oncol Biol Phys 1987;13:135–40.

    Google Scholar 

  4. Bindal RK, Bindal AK, Hess KR. Survival after radiosurgery for brain metastasis: regarding Buatti et al. IJROBP 32(4):1161–1166;1995 [letter; comment], Int J Radiat Oncol Biol Phys 1996;36:523.

    Google Scholar 

  5. Black P. Management of malignant glioma: role of surgery in relation to multimodality therapy. J Neurovirol 1998;4:227–36.

    Article  PubMed  CAS  Google Scholar 

  6. Blomgren H, Lax I, Naslund I, et al. Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator. Clinical experience of the first thirty-one patients. Acta Oncol 1995;34:861–70.

    Article  PubMed  CAS  Google Scholar 

  7. Chapman PH, Thornton A, Ogilvy CS, et al. Radiosurgery of large AVMs [letter; comment]. J Neurosurg 1995;82:1095–7.

    PubMed  CAS  Google Scholar 

  8. Colombo F, Benedetti A, Pozza F, et al. Linear accelerator radiosurgery of cerebral arteriovenous malformations. Neurosurgery 1989;24: 833–40.

    Article  PubMed  CAS  Google Scholar 

  9. Colombo F, Benedetti A, Pozza F, et al. New technique of external stereotactic irradiation by means of linear accelerator for the treatment of intracranial tumors not surgically amendable. Acta Neurochir 1984; 73:80.

    Google Scholar 

  10. Colombo F, Francescon P, Cora S, et al. A simple method to verify in vivo the accuracy of target coordinates in linear accelerator radiosurgery. Int J Radiat Oncol Biol Phys 1998;41:951–4.

    PubMed  CAS  Google Scholar 

  11. Curran EJJ, Scott CB. Radiosurgery for glioma patients: hope or hype? [editorial; comment], Int J Radiat Oncol Biol Phys 1996;36:1279–80.

    Article  PubMed  Google Scholar 

  12. Debus J, Engenhart CR, Holz FG, et al. Stereotactic precision radiotherapy in the treatment of intraocular malignancies with a micro-multileaf collimator. Front Radiat Ther Oncol 1997;30:39–46.

    PubMed  CAS  Google Scholar 

  13. Debus J, Engenhart CR, Knopp MV, et al. [Image-oriented planning of minimally invasive conformai irradiation of the head-neck area]. Radiologe 1996;36:732–6.

    Article  PubMed  CAS  Google Scholar 

  14. Debus J, Engenhart-Cabillic R, Schad L, et al. Cranial nerve imaging for radiosurgery at the base of skull. In: Kondziolka D., ed. Radiosurgery 1995. Basel-Freiburg-Paris: Karger, 1996:336–45.

    Google Scholar 

  15. Di CG, Oldfield E, Wright DC, et al. Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies. AJR 1988;150:189–97.

    Google Scholar 

  16. Engenhart-Cabillic R, Debus J, Wannenmacher M. [Radiotherapy of Hodgkin’s and non-Hodgkin’s lymphomas. Indications, techniques and outcome], Radiologe 1997;37:81–8.

    Article  PubMed  CAS  Google Scholar 

  17. Engenhart R, Kimmig BN, Hover KH, et al. Stereotactic single high dose radiation therapy of benign intracranial meningiomas. Int J Radiat Oncol Biol Phys 1990;19:1021–6.

    PubMed  CAS  Google Scholar 

  18. Engenhart R, Wowra B, Debus J, et al. The role of high-dose, single-fraction irradiation in small and large intracranial arteriovenous malformations. Int J Radiat Oncol Biol Phys 1994;30:521–9.

    PubMed  CAS  Google Scholar 

  19. Engenhart R, Wowra B, Kimmig B, et al. [Stereotactic convergent-beam irradiation: its current prospects based on clinical results], Strahlenther Onkol 1992;168:245–59.

    PubMed  CAS  Google Scholar 

  20. Essig M, Engenhart R, Knopp MV, et al. Cerebral arteriovenous malformations: improved nidus demarcation by means of dynamic tagging MR-angiography. Magn Reson Imaging 1996;14:227–33.

    Article  PubMed  CAS  Google Scholar 

  21. Fabrikant JI, Lyman JT, Hosobuchi Y. Stereotactic heavy-ion Bragg peak radiosurgery for intra-cranial vascular disorders: method for treatment of deep arteriovenous malformations. Br J Radiol 1984;57:479–90.

    PubMed  CAS  Google Scholar 

  22. Flickinger JC, Kondziolka D, Pollock BE, et al. Complications from arteriovenous malformation radiosurgery: multivariate analysis and risk modeling. Int J Radiat Oncol Biol Phys 1997;38:485–90.

    PubMed  CAS  Google Scholar 

  23. Flickinger JC, Lunsford LD, Somaza S, et al. Radiosurgery: its role in brain metastasis management. Neurosurg. Clin N Am 1996;7:497–504.

    CAS  Google Scholar 

  24. Flickinger JC, Pollock BE, Kondziolka D, et al. A dose-response analysis of arteriovenous malformation obliteration after radiosurgery [see comments]. Int J Radiat Oncol Biol Phys 1996;36:873–9.

    PubMed  CAS  Google Scholar 

  25. Flickinger JC, Schell MC, Larson DA. Estimation of complications for linear accelerator radiosurgery with the integrated logistic formula. Int J Radiat Oncol Biol Phys 1990;19:143–8.

    PubMed  CAS  Google Scholar 

  26. Gademann G, Schlegel W, Debus J, et al. Fractionated stereotactically guided radiotherapy of head and neck tumors: a report on clinical use of a new system in 195 cases. Radiother Oncol 1993;29:205–13.

    Article  PubMed  CAS  Google Scholar 

  27. Grosu AL, Stark S, Feldmann HJ, et al. [Stereotactic convergence irradiation with linear accelerator. Imaging,technique and clinical indications]. Rontgenpraxis 1998;51:9–15.

    PubMed  CAS  Google Scholar 

  28. Hakim R, Alexander E, Loeffler JS, et al. Results of linear acceleratorbased radiosurgery for intracranial meningiomas. Neurosurgery 1998;42: 446–53.

    Article  PubMed  CAS  Google Scholar 

  29. Hartmann GH, Schlegel W, Sturm V, et al. Cerebral radiation surgery using moving field irradiation at a linear accelerator facility. Int J Radiat Oncol Biol Phys 1985;ll:1185–92.

    Google Scholar 

  30. Ito K, Kurita H, Sugasawa K, et al. Analyses of neuro-otological complications after radiosurgery for acoustic neurinomas. Int J Radiat Oncol Biol Phys 1997;39:983–8.

    PubMed  CAS  Google Scholar 

  31. Kjellberg RN, Hanamura T, Davis KR, et al. Bragg-peak proton-beam therapy for arteriovenous malformations of the brain. N Engl J Med 1983;309:269–74.

    Article  PubMed  CAS  Google Scholar 

  32. Kocher M, Voges J, Staar S, et al. Linear accelerator radiosurgery for recurrent malignant tumors of the skull base. Am J Clin Oncol 1998;21: 18–22.

    Article  PubMed  CAS  Google Scholar 

  33. Kubo HD, Pappas CT, Wilder RB. A comparison of arc-based and static mini-multileaf collimator-based radiosurgery treatment plans. Radiother Oncol 1997;45:89–93.

    Article  PubMed  CAS  Google Scholar 

  34. Leber KA, Bergloff J, Pendl G. Dose-response tolerance of the visual pathways and cranial nerves of the cavernous sinus to stereotactic radiosurgery. J Neurosurg 1998;88:43–50.

    Article  PubMed  CAS  Google Scholar 

  35. Leksell L. The stereotaxic method and radiosurgery of the brain. Acta Chir Scand 1951;102:316–9.

    PubMed  CAS  Google Scholar 

  36. Leksell L, Lindquist C, Adler JR, et al. A new fixation device for the Leksell stereotaxic system. Technical note. J Neurosurg 1987;66:626–9.

    Article  PubMed  CAS  Google Scholar 

  37. Linskey ME, Flickinger JC, Lunsford LD. Cranial nerve length predicts the risk of delayed facial and trigeminal neuropathies after acoustic tumor stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 1993;25:227–33.

    PubMed  CAS  Google Scholar 

  38. Linskey ME, Lunsford LD, Flickinger JC, et al. Stereotactic radiosurgery for acoustic tumors. Neurosurg. Clin N Am 1992;3:191–205.

    CAS  Google Scholar 

  39. Lyman JT, Kanstein L, Yeater F, et al. A helium-ion beam for stereotactic radiosurgery of central nervous system disorders. Med Phys 1986;13: 695–9.

    Article  PubMed  CAS  Google Scholar 

  40. Mendenhall WM, Friedman WA, Bova FJ. Linear accelerator-based stereotactic radiosurgery for acoustic schwannomas [see comments]. Int J Radiat Oncol Biol Phys 1994;28:803–10.

    PubMed  CAS  Google Scholar 

  41. Nieder C, Schwerdtfeger K, Steudel WI, et al. Patterns of relapse and late toxicity after resection and whole-brain radiotherapy for solitary brain m\tastases. Strahlenther Onkol 1998;174:275–8.

    Article  PubMed  CAS  Google Scholar 

  42. Pastyr O, Hartmann GH, Schlegel W, et al. Stereotactically guided convergent beam irradiation with a linear accelerator: localization-technique. Acta Neurochir (Wien) 1989;99:61–4.

    Article  CAS  Google Scholar 

  43. Patchell RA, Tibbs PA, Walsh JW, et al. A randomized trial of surgery in the treatment of single m\tastases to the brain [see comments]. N Engl J Med 1990;322:494–500.

    Article  PubMed  CAS  Google Scholar 

  44. Patrice SJ, Tarbell NJ, Goumnerova LC, et al. Results of radiosurgery in the management of recurrent and residual medulloblastoma. Pediatr Neurosurg 1995;22:197–203.

    Article  PubMed  CAS  Google Scholar 

  45. Pikus HJ, Beach ML, Harbaugh RE. Microsurgical treatment of arterio-venous malformations: analysis and comparison with stereotactic radio-surgery. J Neurosurg 1998;88:641–6.

    Article  PubMed  CAS  Google Scholar 

  46. Pirzkall A, Debus J, Lohr F, et al. Radiosurgery alone or in combination with whole brain radiotherapy for brain m\tastases. J Clin Oncol 1998;16:3563–3569.

    PubMed  CAS  Google Scholar 

  47. Pollock BE, Flickinger JC, Lunsford LD, et al. Factors associated with successful arteriovenous malformation radiosurgery. Neurosurgery 1998;42:1239–44.

    Article  PubMed  CAS  Google Scholar 

  48. Schad LR, Boesecke R, Schlegel W, et al. Three-dimensional image correlation of CT, MR, and PET studies in radiotherapy treatment planning of brain tumors. J Comput Assist Tomogr 1987;ll:948–54.

    Article  Google Scholar 

  49. Schad LR, Ehricke HH, Wowra B, et al. Correction of spatial distortion in magnetic resonance angiography for radiosurgical treatment planning of cerebral arteriovenous malformations. Magn Reson Imaging 1992;10: 609–21.

    Article  PubMed  CAS  Google Scholar 

  50. Schlegel W, Pastyr O, Bortfeld T, et al. Computer systems and mechanical tools for stereotactically guided conformation therapy with linear accelerators. Int J Radiat Oncol Biol Phys 1992;24:781–7.

    PubMed  CAS  Google Scholar 

  51. Shrieve DC, Loeffler JS. Advances in radiation therapy for brain tumors. Neurol Clin 1995;13:773–93.

    PubMed  CAS  Google Scholar 

  52. Spetzler RF, Martin NA. A proposed grading system for arteriovenous malformations. J Neurosurg 1986;65:476–83.

    Article  PubMed  CAS  Google Scholar 

  53. Steiner L, Lindquist C, Adler JR, et al. Clinical outcome of radiosurgery for cerebral arteriovenous malformations [see comments]. J Neurosurg 1992;77:l-8.

    Google Scholar 

  54. Sturm V, Kober B, Hover KH, et al. Stereotactic percutaneous single dose irradiation of brain m\tastases with a linear accelerator. Int J Radiat Oncol Biol Phys 1987;13:279–82.

    PubMed  CAS  Google Scholar 

  55. Subach BR, Lunsford LD, Kondziolka D, et al. Management of petroclival meningiomas by stereotactic radiosurgery. Neurosurgery 1998;42: 437–43.

    Article  PubMed  CAS  Google Scholar 

  56. Tsai JS, Curran BH, Sternick ES, et al. Use of a 1 mm collimator to test the accuracy of stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 1996;35:579–86.

    Article  PubMed  CAS  Google Scholar 

  57. Valentino V, Schinaia G, Raimondi AJ. The results of radiosurgical management of 72 middle fossa meningiomas. Acta Neurochir (Wien) 1993; 122:60–70.

    Article  CAS  Google Scholar 

  58. Varlotto JM, Shrieve DC, Alexander E, et al. Fractionated stereotactic radiotherapy for the treatment of acoustic neuromas: preliminary results. Int J Radiat Oncol Biol Phys 1996;36:141–5.

    PubMed  CAS  Google Scholar 

  59. Verhey LJ, Smith V, Serago CF. Comparison of radiosurgery treatment modalities based on physical dose distributions. Int J Radiat Oncol Biol Phys 1998;40:497–505.

    PubMed  CAS  Google Scholar 

  60. Voges J, Sturm V, Deuss U, et al. LINAC-radiosurgery (LINAC-RS) in pituitary adenomas: preliminary results. Acta Neurochir (Wien) 1996;65: Suppl:41–3.

    CAS  Google Scholar 

  61. Voges J, Treuer H, Erdmann J, et al. Linac radiosurgery in brain m\tastases. Acta Neurochir (Wien) 1994;62:Suppl:72–6.

    CAS  Google Scholar 

  62. Voges J, Treuer H, Sturm V, et al. Risk analysis of linear accelerator radiosurgery. Int J Radiat Oncol Biol Phys 1996;36:1055–63.

    PubMed  CAS  Google Scholar 

  63. Wallner KE, Sheline GE, Pitts LH, et al. Efficacy of irradiation for in-completely excised acoustic neurilemmomas. J Neurosurg 1987;67: 858–63.

    Article  PubMed  CAS  Google Scholar 

  64. Willner J, Flentje M, Bratengeier K. CT simulation in stereotactic brain radiotherapy-analysis of isocenter reproducibility with mask fixation. Radiother Oncol 1997;45:83–8.

    Article  PubMed  CAS  Google Scholar 

  65. Yoon SC, Suh TS, Jang HS, et al. Clinical results of 24 pituitary macroadenomas with linac-based stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 1998;41:849–53.

    PubMed  CAS  Google Scholar 

  66. Zierhut D, Flentje M, Adolph J, et al. External radiotherapy of pituitary adenomas. Int J Radiat Oncol Biol Phys 1995;33:307–14.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debus, J., Pirzkall, A., Schlegel, W. et al. Stereotaktische einzeitbestrahlung (radiochirurgie) Methodik, indikationen, ergebnisse. Strahlenther Onkol 175, 47–56 (1999). https://doi.org/10.1007/BF02753842

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02753842

Schlüsselwörter

Key Words

Navigation