Skip to main content

Inhalationsanästhetika

  • Chapter
  • First Online:
Die Anästhesiologie

Part of the book series: Springer Reference Medizin ((SRM))

Zusammenfassung

Inhalationsanästhetika sind physikochemisch Gase (Lachgas oder Xenon) bzw. Dämpfe (volatile Anästhetika) und werden durch Einatmung in den Körper aufgenommen. Die sog. volatilen Anästhetika wie Halothan, Isofluran, Desfluran und Sevofluran liegen bei Raumtemperatur als Flüssigkeiten vor und müssen erst in den gasförmigen Zustand überführt werden, bevor sie klinisch eingesetzt werden können.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Bart AJ, Homi J, Linde HW (1971) Changes in power spectra of electroencephalograms during anesthesia with fluroxene, methoxyflurane and ethrane. Anesth Analg 50:53–63

    CAS  PubMed  Google Scholar 

  2. Bedforth NM, Hardman JG, Nathanson MH (2000) Cerebral hemodynamic response to the introduction of desflurane: a comparison with sevoflurane. Anesth Analg 91:152–155

    CAS  PubMed  Google Scholar 

  3. Benumof JL (1985) One-lung ventilation and hypoxic pulmonary vasoconstriction: implications for anesthetic management. Anesth Analg 64:821–833

    CAS  PubMed  Google Scholar 

  4. Bernard JM, Doursout MF, Wouters P et al (1991) Effects of enflurane and isoflurane on hepatic and renal circulations in chronically instrumented dogs. Anesthesiology 74:298–302

    CAS  PubMed  Google Scholar 

  5. Bernard JM, Doursout MF, Wouters P et al (1992) Effects of sevoflurane and isoflurane on hepatic circulation in the chronically instrumented dog. Anesthesiology 77:541–545

    CAS  PubMed  Google Scholar 

  6. Borill JG (2008) Inhalation anaesthesia: from diethyl ether to xenon. In: Schüller J, Schwilden H (Hrsg) Modern anesthetics. Handbook of experimental pharmacology, Bd 182. Springer, Berlin/Heidelberg

    Google Scholar 

  7. Brown RH, Mitzner W, Zerhouni E, Hirshman CA (1993) Low dose halothane is superior to isoflurane at reversing bronchoconstriction. Anesthesiology 78:1097–1101

    CAS  PubMed  Google Scholar 

  8. Buchinger H, Grundmann U, Ziegeler S (2005) Myocardial preconditioning with volatile anesthetics. General anaesthesia as protective intervention. Anaesthesist 54:861–870

    CAS  PubMed  Google Scholar 

  9. Carli F, Ronzoni G, Webster J, Khan K, Elia M (1993) The independent metabolic effects of halothane and isoflurane anaesthesia. Acta Anaesthesiol Scand 37:672–678

    CAS  PubMed  Google Scholar 

  10. Carpenter RL, Eger EI II, Johnson BH, Unadkat JD, Sheiner LB (1986) The extent of metabolism of inhaled anesthetics in humans. Anesthesiology 65:201–205

    CAS  PubMed  Google Scholar 

  11. Carpenter RL, Eger EI II, Johnson BH, Unadkat JD, Sheiner LB (1986) Pharmacokinetics of inhaled anesthetics in humans: measurements during and after the simultaneous administration of enflurane, halothane, isoflurane, methoxyflurane, and nitrous oxide. Anesth Analg 65:575–582

    CAS  PubMed  Google Scholar 

  12. Conzen PF, Hobbhahn J, Goetz AE et al (1989) Regional blood flow and tissue oxygen pressures of the collateral-dependent myocardium during isoflurane anesthesia in dogs. Anesthesiology 70:442–452

    CAS  PubMed  Google Scholar 

  13. Conzen PF, Nuscheler M, Melotte A et al (1995) Renal function and serum fluoride concentrations in patients with stable renal insufficiency after anesthesia with sevoflurane or isoflurane. Anesth Analg 81:569–575

    CAS  PubMed  Google Scholar 

  14. Conzen PF, Vollmar B, Habazettl H et al (1992) Systemic and regional hemodynamics of isoflurane and sevoflurane in rats. Anesth Analg 74:79–88

    CAS  PubMed  Google Scholar 

  15. Cromheecke S, Pepermans V, Hendrickx E, Lorsomradee S, Ten Broecke PW, Stockman BA, Rodrigus IE, De Hert SG (2006) Cardioprotective properties of sevoflurane in patients undergoing aortic valve replacement with cardiopulmonary bypass. Anesth Analg 103:289–296

    CAS  PubMed  Google Scholar 

  16. Crozier TA, Morawietz A, Drobnik L et al (1992) The influence of isoflurane on peri-operative endocrine and metabolic stress response. Eur J Anaesthesiol 9:55–62

    CAS  PubMed  Google Scholar 

  17. Dahan A, Treppema LJ (2003) Influence of anaesthesia on control of breathing. Br J Anaesth 91:40–49

    CAS  PubMed  Google Scholar 

  18. Desborough JP, Jones PM, Persaud SJ, Landon MJ, Howell SL (1993) Isoflurane inhibits insulin secretion from isolated rat pancreatic islets of Langerhans. Br J Anaesth 71:873–876

    CAS  PubMed  Google Scholar 

  19. Desborough JP, Knowles MG, Hall GM (1998) Effects of isoflurane-nitrous oxide anaesthesia on insulin secretion in female patients. Br J Anaesth 80:250–252

    CAS  PubMed  Google Scholar 

  20. De Hert, der Linden V et al (2004) Cardioprotective properties of sevoflurane in patients undergoing coronary surgery with cardiopulmonary bypass are related to the modility of its administration. Anesthesiology 101:299–310

    CAS  PubMed  Google Scholar 

  21. Dogan IV, Ovali E, Eti Z, Yayci A, Gogus FY (1999) The in vitro effects of isoflurane, sevoflurane, and propofol on platelet aggregation. Anesth Analg 88:432–436

    CAS  PubMed  Google Scholar 

  22. Drummond JC, Todd MM, Shapiro HM (1983) Cerebral blood flow autoregulation in the cat during anesthesia with halothane and isoflurane. Anesthesiology 59(A):305

    Google Scholar 

  23. Duke PC, Townes D, Wade JG (1977) Halothane depresses baroreflex control of heart rate in man. Anesthesiology 46:184–187

    CAS  PubMed  Google Scholar 

  24. Eger EI II (1987) Partition coefficients of I-653 in human blood, saline, and olive oil. Anesth Analg 66:971–973

    CAS  PubMed  Google Scholar 

  25. Eger EI II (1994) New inhaled anesthetics. Anesthesiology 80:906–922

    CAS  PubMed  Google Scholar 

  26. Eger EI II, Stevens WC, Cromwell TH (1971) The electroencephalogram in man anesthetized with forane. Anesthesiology 35:504–508

    CAS  PubMed  Google Scholar 

  27. Eilers H, Kindler CH, Bickler PE (1999) Different effects of volatile anesthetics and polyhalogenated alkanes on depolarization-evoked glutamate release in rat cortical brain slices. Anesth Analg 88:1168–1174

    CAS  PubMed  Google Scholar 

  28. Epstein RM, Rackow H, Salanitre E, Wolf GL (1964) Influence of the concentration effect on the uptake of anesthetic mixtures: the second gas effect. Anesthesiology 25:364–371

    CAS  PubMed  Google Scholar 

  29. Fang ZX, Eger EI, Laster MJ et al (1995) Carbon monoxide production from degradation of desflurane, enflurane, isoflurane, halothane, and sevoflurane by soda lime and baralyme. Anesth Analg 89:1187–1193

    Google Scholar 

  30. Fletcher JE, Sebel PS, Murphy MR et al (1991) Psychomotor performance after desflurane anesthesia: a comparison with isoflurane. Anesth Analg 73:260–265

    CAS  PubMed  Google Scholar 

  31. Förster H, Behne M, Warnken UH, Asskali F, Dudziak R (2000) Die Anwendung von Lithiumhydroxid als Kohlendioxidabsorbens verhindert das Entstehen von Compound A während Sevoflurananästhesie. Anästhesist 49:106–112

    Google Scholar 

  32. Förster H, Warnken UH, Asskali F (1997) Unterschiedliche Reaktion von Sevofluran mit einzelnen Komponenten von Atemkalk. Anästhesist 46:1071–1075

    Google Scholar 

  33. Forbes AR (1976) Halothane depresses mucociliary flow in the trachea. Anesthesiology 45:59–63

    CAS  PubMed  Google Scholar 

  34. Forbes AR, Horrigan RW (1977) Mucociliary flow in the trachea during anesthesia with enflurane, ether, nitrous oxide, and morphine. Anesthesiology 46:319–321

    CAS  PubMed  Google Scholar 

  35. Franks NP, Lieb WR (1994) Molecular and cellular mechanisms of general anaesthesia. Nature 367:607–614

    CAS  PubMed  Google Scholar 

  36. Frink EJ, Malan TP, Atlas M et al (1992) Clinical comparison of sevoflurane and isoflurane in healthy patients. Anesth Analg 74:241–245

    PubMed  Google Scholar 

  37. Frink EJ, Malan TP, Isner RJ, Brown EA, Morgan SE, Brown BR (1994) Renal concentrating function with prolonged sevoflurane or enflurane anesthesia in volunteers. Anesthesiology 80:1019–1025

    CAS  PubMed  Google Scholar 

  38. Frink EJ, Malan TP, Patel CB et al (1995) Hepatocellular function following sevoflurane or isoflurane anesthesia in cirrhotic patients. Anesthesiology 83(A):329

    Google Scholar 

  39. Frink EJ, Morgan SE, Coetzee A, Conzen PF, Brown BR (1992) The effects of sevoflurane, halothane, enflurane, and isoflurane on hepatic blood flow and oxygenation in chronically instrumented greyhound dogs. Anesthesiology 76:85–90

    CAS  PubMed  Google Scholar 

  40. Fröba G (1997) Xenon als Inhalationsanästhetikum. Anasthesiol Intensivmed Notfallmed Schmerzther 32:48–51

    PubMed  Google Scholar 

  41. Fröba G, Marx T, Pazhur J et al (1999) Xenon does not trigger malignant hyperthermia in susceptible swine. Anesthesiology 91:1047–1052

    Google Scholar 

  42. Fröba G, Marx T, Wagner D, Georgieff M (1996) Xenon uptake and excretion. Br J Anaesth 76(A):288

    Google Scholar 

  43. Fujinaga M, Bader J (1994) Methionine prevents nitrous oxide induced teratogenicity in rat embryos grown in culture. Anesthesiology 81:184–189

    CAS  PubMed  Google Scholar 

  44. Goldfarb G, Debaene B, Ang ET et al (1990) Hepatic blood flow in humans during isoflurane-N2O and halothane-N2O anesthesia. Anesth Analg 71:349–353

    CAS  PubMed  Google Scholar 

  45. Higuchi H, Sumikura H, Sumita S et al (1995) Renal function in patients with high serum fluoride concentrations after prolonged sevoflurane anesthesia. Anesthesiology 83:449–458

    CAS  PubMed  Google Scholar 

  46. Hubbard AK, Roth TP, Gandolfi AJ et al (1988) Halothane hepatitis patients generate an antibody response toward a covalently bound metabolite of halothane. Anesthesiology 68:791–796

    CAS  PubMed  Google Scholar 

  47. Hitt BA, Mazze RI, Cousins MJ et al (1974) Metabolism of isoflurane in Fischer 344 rats and man. Anesthesiology 40:62–67

    CAS  PubMed  Google Scholar 

  48. Hussey AJ, Aldridge LM, Paul D et al (1988) Plasma glutathione S-transferase concentration as a measure of hepatocellular integrity following a single general anaesthetic with halothane, enflurane or isoflurane. Br J Anaesth 60:130–135

    CAS  PubMed  Google Scholar 

  49. Jantzen JP, Kleemann PP, Witton PK et al (1988) Prolonged anaesthesia with isoflurane and halothane: effects on hepatic function. Anaesthesia 41:186–189

    Google Scholar 

  50. Johnson JO, Sperry RJ, Lam A, Artru A (1995) A phase III, randomized, open-label study to compare sevoflurane and isoflurane in neurosurgical patients. Anesth Analg 80:214

    Google Scholar 

  51. Kehl F, Smul T, Lange M, Redel A, Roewer N (2005) Organprotektion durch volatile Anästhetika. Anästh Intensivmed 46:491–507

    Google Scholar 

  52. Kennedy RR, Stokes JW, Downing P (1992) Anaesthesia and the „inert“ gases with special reference to xenon. Anaesth Intensive Care 20:66–70

    CAS  PubMed  Google Scholar 

  53. Kirson ED, Yaari Y, Perouansky M (1998) Presynaptic and postsynaptic actions of halothane at glutamatergic synapses in the mouse hippocampus. Br J Pharmacol 124:1607–1614

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kitaguchi K, Ohsumi H, Kuro M, Nakajima T, Hayashi Y (1993) Effects of sevoflurane on cerebral circulation and metabolism in patients with ischemic cerebrovascular disease. Anesthesiology 79:704–709

    CAS  PubMed  Google Scholar 

  55. Koblin DD (1992) Characteristics and implications of desflurane metabolism and toxicity. Anesth Analg 75:10–16

    Google Scholar 

  56. Koblin DD, Eger EI II, Johnson BH et al (1981) Minimum alveolar concentrations and oil/gas partition coefficients of four anesthetic isomers. Anesthesiology 54:314–317

    CAS  PubMed  Google Scholar 

  57. Kochi T, Izumi Y, Isono S, Ide T, Mizuguchi T (1991) Breathing pattern and occlusion pressure waveform in humans anesthetized with halothane or sevoflurane. Anesth Analg 73:327–332

    CAS  PubMed  Google Scholar 

  58. Kotrly KJ, Ebert TJ, Vucins E et al (1984) Baroreceptor reflex control of heart rate during isoflurane in humans. Anesthesiology 60:173–179

    CAS  PubMed  Google Scholar 

  59. Lane GA, Nahrwold ML, Tait AR et al (1980) Anesthetics as teratogens: nitrous oxide is fetotoxic, xenon is not. Science 210:899–901

    CAS  PubMed  Google Scholar 

  60. Leonard PF (1975) The lower limits of flammability of halothane, enflurane, and isoflurane. Anesth Analg 54:238–240

    CAS  PubMed  Google Scholar 

  61. Lerman J, Gregory GA, Willis MM, Eger EI II (1984) Age and solubility of volatile anesthetics in blood. Anesthesiology 61:139–143

    CAS  PubMed  Google Scholar 

  62. Loscar M, Allhoff T, Ott E, Conzen P, Peter K (1996) Aufwachverhalten und kognitive Funktion nach Desfluran oder Isofluran. Anaesthesist 45:140–145

    CAS  PubMed  Google Scholar 

  63. Lutz LJ, Milde JH, Milde LN (1990) The cerebral functional, metabolic, and hemodynamic effects of desflurane in dogs. Anesthesiology 73:125–131

    CAS  PubMed  Google Scholar 

  64. Malan TP Jr, DiNardo JA, Isner RJ et al (1995) Cardiovascular effects of sevoflurane compared with those of isoflurane in volunteers. Anesthesiology 83:918–929

    CAS  PubMed  Google Scholar 

  65. Martin JL, Kenna JG, Pohl LR (1990) Antibody assays for the detection of patients sensitized to halothane. Anesth Analg 70:154–159

    CAS  PubMed  Google Scholar 

  66. Mazze RI, Calverley RK, Smith NT (1977) Inorganic fluoride nephrotoxicity: prolonged enflurane and halothane anesthesia in volunteers. Anesthesiology 46:265–271

    CAS  PubMed  Google Scholar 

  67. Mazze RI, Sievenpiper TS, Stevenson J (1984) Renal effects of enflurane and halothane in patients with abnormal renal function. Anesthesiology 60:161–163

    CAS  PubMed  Google Scholar 

  68. Merin RG, Bernard JM, Doursout MF, Cohen M, Chelly JE (1991) Comparison of the effects of isoflurane and desflurane on cardiovascular dynamics and regional blood flow in the chronically instrumented dog. Anesthesiology 74:568–574

    CAS  PubMed  Google Scholar 

  69. Mihic SJ, Ye Q, Wick MJ et al (1997) Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature 389:385–389

    CAS  PubMed  Google Scholar 

  70. Miletich JD, Ivankovich AD, Albrecht RF et al (1976) Absence of autoregulation of cerebral blood flow during halothane and enflurane anesthesia. Anesth Analg 55:100–106

    CAS  PubMed  Google Scholar 

  71. Munson ES, Eger EI II, Tham MK, Embro WJ (1978) Increase in anesthetic uptake, excretion, and blood solubility in man after eating. Anesth Analg 57:224–231

    CAS  PubMed  Google Scholar 

  72. Murray JM, Renfrew CW, Bedi A, McCrystal CB, Jones DS, Fee JPH (1999) Amsorb a new carbon dioxide absorbent for use in anesthetic breathing systems. Anesthesiology 91:1342–1348

    CAS  PubMed  Google Scholar 

  73. Nunn JF (1981) Faulty cell replication: abortion, congenital abnormalities. Int Anesthesiol Clin 19:77–97

    CAS  PubMed  Google Scholar 

  74. Nuscheler M, Conzen P, Schwender D, Peter K (1996) Fluoridinduzierte Nephrotoxizität: Fakt oder Fiktion? Anaesthesist 45:S32–S40

    CAS  PubMed  Google Scholar 

  75. Ornstein E, Young WL, Fleischer LH, Ostapkovich N (1993) Desflurane and isoflurane have similar effects on cerebral blood flow in patients with intracranial mass lesions. Anesthesiology 79:498–502

    CAS  PubMed  Google Scholar 

  76. Pizov R, Takahashi M, Hirshman CA, Croxton T (1992) Halothane inhibition of ion transport of the tracheal epithelium. Anesthesiology 76:985–989

    CAS  PubMed  Google Scholar 

  77. Pocock G, Richards CD (1991) Cellular mechanisms in general anaesthesia. Br J Anaesth 66:116–128

    CAS  PubMed  Google Scholar 

  78. Raines DE (1996) Anesthetic and nonanesthetic halogenated volatile compounds have dissimilar activities on nicotinic acetylcholine receptor desensitization kinetics. Anesthesiology 84:663–671

    CAS  PubMed  Google Scholar 

  79. Rampil IJ, Lockhart SH, Eger EI II et al (1991) The electroencephalographic effects of desflurane in humans. Anesthesiology 74:434–439

    CAS  PubMed  Google Scholar 

  80. Scheller M, Bufler J, Schneck HJ et al (1995) Enflurane blocks ion current through the nicotinic acethylcholine receptor. Anaesthesiol Intensivmed Notfallmed Schmerzther 30:370–374

    CAS  Google Scholar 

  81. Scheller MS, Nakakimura K, Fleischer JE, Zornow MH (1990) Cerebral effects of sevoflurane in the dog: comparison with isoflurane and enflurane. Br J Anaesth 65:388–392

    CAS  PubMed  Google Scholar 

  82. Scheller MS, Tateishi A, Drummond JC, Zornow MH (1988) The effects of sevoflurane on cerebral blood flow, cerebral metabolic rate for oxygen, intracranial pressure, and the electroencephalogram are similar to those of isoflurane in the rabbit. Anesthesiology 68:548–551

    CAS  PubMed  Google Scholar 

  83. Scheller MS, Todd MM, Drummond JC (1984) The effects of halothane and isoflurane on cerebral blood flow at various levels of PaCO2 in rabbits. Anesthesiology 61(A):528

    Google Scholar 

  84. Secher O (1971) Physical and chemical data on anaesthetics. Acta Anaesthesiol Scand 42:S1–S96

    Google Scholar 

  85. Sharp JH, Trudell JR, Cohen EN (1979) Volatile metabolites and decomposition products of halothane in man. Anesthesiology 50:2–8

    CAS  PubMed  Google Scholar 

  86. Shichino T, Murakawa M, Adachi T et al (1997) Effects of isoflurane on in vivo release of acetylcholine in the rat cerebral cortex and striatum. Acta Anaesthesiol Scand 41:1335–1340

    CAS  PubMed  Google Scholar 

  87. Stoelting RK, Eger EI II (1969) An additional explanation for the second gas effect. Anesthesiology 3:273–277

    Google Scholar 

  88. Strebel S, Lam AM, Matta B et al (1995) Dynamic and static cerebral autoregulation during isoflurane, desflurane, and propofol anesthesia. Anesthesiology 83:66–76

    CAS  PubMed  Google Scholar 

  89. Strum DP, Eger EI II (1987) Partition coefficients for sevoflurane in human blood, saline, and olive oil. Anesth Analg 66:654–656

    CAS  PubMed  Google Scholar 

  90. Taheri S, Halsey MJ, Liu J et al (1991) What solvent best represents the site of action of inhaled anesthetics in humans, rats and dogs? Anesth Analg 72:627–634

    CAS  PubMed  Google Scholar 

  91. Targ A, Yasuda N, Eger EI II (1989) Solubility of I-653, sevoflurane, isoflurane, and halothane in plastics and rubber composing a conventional anesthetic circuit. Anesth Analg 68:218–225

    Google Scholar 

  92. Terrell RC (1984) Physical and chemical properties of anaesthetic agents. Br J Anaesth 56:S3–S7

    Google Scholar 

  93. Thiel A, Schindler E, Dyckmans D, Hempelmann G (1997) Transkranielle Dopplersonographie. Effekte von Sevofluran im Vergleich zu Isofluran. Anästhesist 46:29–33

    CAS  Google Scholar 

  94. Todd MM, Drummond JC (1984) A comparison of the cerebrovascular and metabolic effects of halothane and isoflurane in the cat. Anesthesiology 60:276–282

    CAS  PubMed  Google Scholar 

  95. Vollmar B, Conzen PF, Kerner T et al (1992) Blood flow and tissue oxygen pressures of liver and pancreas in rats: effects of volatile anesthetics and of hemorrhage. Anesth Analg 75:421–430

    CAS  PubMed  Google Scholar 

  96. Wallin RF, Regan BM, Napoli MD, Stern IJ (1975) Sevoflurane: a new inhalational anesthetic agent. Anesth Analg 54:758–766

    CAS  PubMed  Google Scholar 

  97. Whitten CW, Elmore JC, Latson TW (1993) Desflurane: a review. Prog Anesthesiol 7:45–58

    Google Scholar 

  98. Wu XS, Sun JY, Evers AS, Crowder M, Wu LG (2004) Isoflurane inhibits transmitter release and the presynaptic action potential. Anesthesiology 100:663–670

    CAS  PubMed  Google Scholar 

  99. Yasuda N, Lockhart SH, Eger EI II et al (1991) Kinetics of desflurane, isoflurane, and halothane in humans. Anesthesiology 74:489–498

    Google Scholar 

  100. Yasuda N, Lockhart SH, Eger EI II et al (1991) Comparison of kinetics of sevoflurane and isoflurane in humans. Anesth Analg 72:316–324

    CAS  PubMed  Google Scholar 

  101. Yasuda N, Targ AG, Eger EI II (1989) Solubility of I-653, sevoflurane, isoflurane, and halothane in human tissues. Anesth Analg 69:370–373

    CAS  PubMed  Google Scholar 

  102. Zaleski L, Abello D, Gold MI (1993) Desflurane vs. isoflurane in patients with chronic hepatic and renal disease. Anesth Analg 76:353–356

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Loscar .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Loscar, M., Annecke, T., Conzen, P. (2019). Inhalationsanästhetika. In: Rossaint, R., Werner, C., Zwißler, B. (eds) Die Anästhesiologie. Springer Reference Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54507-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54507-2_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54505-8

  • Online ISBN: 978-3-662-54507-2

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics