Skip to main content

Funktionelle Hirnorganisation und Geschlecht

  • Chapter
Gehirn und Geschlecht

Auszug

Wenn wir unser Gehirn sind, dann müssen Geschlechtsunterschiede des Denkens und Handelns auf geschlechtsabhängige Differenzen in der anatomischen und funktionellen Organisation des Gehirns zurückgeführt werden können. Solche anatomischen Unterschiede zwischen den Geschlechtern nennt man »Sexualdimorphismen«. Wahrscheinlich etablieren sich diese Sexualdimorphismen in der frühen Entwicklungsphase des Nervensystems unter dem Einfluss von Sexualhormonen. Diesen prägenden Effekt von Steroiden nennt man »organisierend«. Früher glaubte man, dass die dabei entstehenden neuroanatomischen Geschlechtsunterschiede so subtil sind, dass man sie mit einfachen neuroanatomischen Mitteln nicht sehen kann. Ferner nahm man an, dass nach dem Abschluss der Hirnentwicklung Sexualhormone nur noch zuvor etablierte Schaltkreise aktivieren oder dämpfen können, aber nicht mehr in der Lage sind, die Hirnanatomie zu verändern. Diesen Funktionsmechanismus von Steroiden bei Erwachsenen nennt man »aktivierend«.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Aboitiz F, Scheibel AB, Fischer RS, Zaidel E (1992) Fiber composition of the human corpus callosum. Brain Research 598:143–153

    PubMed  Google Scholar 

  • Alexopoulos DS (1996) Sex differences and IQ. Pers Indiv Diff 20:445–450

    Google Scholar 

  • Allen LS, Gorski RA (1990) Sexual difference in the bed nucleus of the stria terminalis of the human brain. J Comp Neurol 302:697–706

    PubMed  Google Scholar 

  • Allen LS, Gorski RA (1991) Sexual dimorphism of the anterior commissure and massa intermedia of the human brain. J Comp Neurol 312:97–104

    PubMed  Google Scholar 

  • Amunts K, Jäncke L, Mohlberg H, Steinmetz H, Zilles K (2000) Interhemispheric asymmetry of the human motor cortex related to handedness and gender. Neuropsychologia 38:304–312

    PubMed  Google Scholar 

  • Andreasen NC, Flaum M, Swayze II V, O’Leary DS, Alliger R, Cohen G, Ehrhardt J, Yuh WTC (1993) Intelligence and brain structure in normal individuals. Am J Psychiat 150:130–134

    PubMed  Google Scholar 

  • Andersen BB, Gundersen HJ, Pakkenberg B (2003) Aging of the human cerebellum: a stereological study. J Comp Neurol 466:356–365

    PubMed  Google Scholar 

  • Ankney CD (1992) Sex differences in relative brain size: The mismeasure of woman, too? Intelligence 16:329–336

    Google Scholar 

  • Balthazart J, Absil P, Gerard M, Appeltants D, Ball GF (1998) Appetitive as well as consummatory male sexual behavior in Japanese quail are differentially regulated by subregions of the preoptic medial nucleus. J Neurosci 18:6512–6527

    PubMed  Google Scholar 

  • Bibawi D, Cherry B, Hellige JB (1995) Fluctuations of perceptual asymmetry across time in women and men: Effects related to the menstrual cycle. Neuropsychologia 33:131–138

    PubMed  Google Scholar 

  • Bishop KM, Wahlsten D (1997) Sex differences in the human corpus callosum: myth or reality? Neuroscience and Biobehavioral Reviews 21:581–601

    PubMed  Google Scholar 

  • Braun CMJ (1992) Estimation of interhemispheric dynamics from simple unimaual reaction to extrafoveal stimuli. Neuropsychology Review 3:321–365

    PubMed  Google Scholar 

  • Breedlove SM (1994) Sexual differentiation of the human nervous system. Ann Rev Psychol 45:389–418

    Google Scholar 

  • Breedlove SM, Arnold AP (1983) Hormonal control of a developing neuromuscular system II Sensitive periods for the androgen-induced masculinization of the rat spinal nucleus of the bulbocavernosus. J Neurosci 3:424–432

    PubMed  Google Scholar 

  • Broca P (1861) Perte de la parole, ramollissement chronique et destruction partielle du lobe anterieur gauche du cerveau. Bull Soc Anthropol 2:235–238

    Google Scholar 

  • Brown WS, Larson EB, Jeeves MA (1994) Directional asymmetries in interhemispheric transmission time: Evidence from visual evoked potentials. Neuropsychologia 32:439–448

    PubMed  Google Scholar 

  • Byne W (1998) The medial preoptic and anterior hypothalamic regions of the rhesus monkey: cytoarchitectonic comparison with the human and evidence for sexual dimorphism. Brain Res 793:346–350

    PubMed  Google Scholar 

  • Byne W, Lasco MS, Kemether E, Shinwari A, Edgar MA, Morgello S, Jones LB, Tobet S (2000) The interstitial nuclei of the human anterior hypothalamus: an investigation of sexual variation in volume and cell size, number and density. Brain Res 856:254–258

    PubMed  Google Scholar 

  • Byne W, Tobet S, Mattiace LA, Lasco MS, Kemether E, Edgar, MA, Morgello S, Buchsbaum MS, Jones LB (2001) The interstitial nuclei of the human anterior hypothalamus: an investigation of variation with sex, sexual orientation, and HIV status. Horm Behav 40:86–92

    PubMed  Google Scholar 

  • Cahill L, van Stegeren A (2003) Sex-related impairment of memory for emotional events with β-adrenergic blockade. Neurobiol Learn Mem 79:81–88

    PubMed  Google Scholar 

  • Cahill L, Prins B, Weber M, McGaugh JL (1994) β-adrenergic activation and memory for emotional events. Nature371:702–704

    PubMed  Google Scholar 

  • Cahill L, Babinsky R, Markowitsch HJ, McGaugh JL (1995) The amygdala and emotional memory. Nature 377:296

    Google Scholar 

  • Cahill L, Haier RJ, White NS, Fallon J, Kilpatrick L, Lawrence C, Potkin SG, Alkire MT (2001) Sex-related difference in amygdala activity during emotionally influenced memory storage. Neurobiol Learn Mem 75:1–9

    PubMed  Google Scholar 

  • Cahill L, Uncapher M, Kilpatrick L, Alkire MT, Turner J (2004) Sex-related hemispheric lateralization of amygdala function in emotionally influenced memory: an FMRI investigation. Learn Mem 11:261–266

    PubMed  Google Scholar 

  • Canli T, Desmond JE, Zhao Z, Gabriel JDE (2002) Sex differences in the neural basis of emotional memories. Proc Natl Acad Sci USA 99:10789–10794

    PubMed  Google Scholar 

  • Carne RP, Vogrin S, Litewka L, Cook MJ (2006) Cerebral cortex: an MRI-based study of volume and variance with age and sex. J Clin Neurosci 13:60–72

    PubMed  Google Scholar 

  • Chiarello C, Maxfield L (1996) Varieties of interhemispheric inhibition, or how to keep a good hemisphere down. Brain and Cognition 30:81–108

    PubMed  Google Scholar 

  • Chiarello C, McMahon MA, Schaffer K (1989) Visual cerebral lateralization over phases of the menstrual cycle: A preliminary investigation. Brain and Cognition 11:18–36

    PubMed  Google Scholar 

  • Clark AS, MacLusky NJ, Goldman-Rakic PS (1988) Androgen binding and metabolism in the cerebral cortex of the developing rhesus monkey. Endocrinology 123:932–940

    PubMed  Google Scholar 

  • Clarke JM, Zaidel E (1994) Anatomical-behavioral relationships: corpus callosum morphometry and hemispheric specialization. Behavioral Brain Research 64:185–202

    Google Scholar 

  • Constant D, Ruther H (1996) Sexual dimorphism in the human corpus callosum? A comparison of methologies. Brain Research 727:99–106

    PubMed  Google Scholar 

  • Conti F, Manzoni T (1994) The neurotransmitters and postsynaptic actions of callosally projecting neurons. Behavioural Brain Research 64:37–53

    PubMed  Google Scholar 

  • Cooke BM, Tabibnia G, Breedlove SM (1999) A brain sexual dimorphism controlled by adult circulating androgens. Proc Natl Acad Sci USA 96:7538–7540

    PubMed  Google Scholar 

  • De Courten-Meyers GM (1999) The human cerebral cortex: gender differences in structure and function. Journal of Neuropathology and Experimental Neurology 58:217–226

    Google Scholar 

  • De Jonge FH, Louwerse AL, Ooms MR, Evers P, Endert E, Van der Poll NE (1989) Lesions of the SDN-POA inhibit sexual behavior of male Wistar rats. Brain Res Bull 23:483–492

    PubMed  Google Scholar 

  • De Lacoste-Utamsing C, Holloway RL (1982) Sexual dimorphism in the human corpus callosum. Science 16:1431–1432

    Google Scholar 

  • Driesen NR, Raz N (1995) The influence of sex, age, and handedness on the corpus callosum morphology: a meta analysis. Psychobiology 23:240–247

    Google Scholar 

  • Evert DL, Kmen M (2003) Hemispheric asymmetries for global and local processing as a function of stimulus exposure duration. Brain and Cognition 51:115–142

    PubMed  Google Scholar 

  • Fernandez-Guasti A, Kruijver FP, Fodor M, Swaab DF (2000) Sex differences in the distribution of androgen receptors in the human hypothalamus. J Comp Neurol 425:422–435

    PubMed  Google Scholar 

  • Fishman RB, Breedlove SM (1988) Neonatal androgen maintains sexually dimorphic muscles in the absence of innervation. Muscle Nerve 11:553–560

    PubMed  Google Scholar 

  • Fitch RH, Denenberg VH (1998) A role for ovarian hormones in sexual differentiation of the brain. Behavioral Brain Science 21:311–327

    Google Scholar 

  • Forger NG, Hodges LL, Roberts SL, Breedlove SM (1992) Regulation of motoneuron death in the spinal nucleus of the bulbocavernosus. J Neurobiol 23:1192–1203

    PubMed  Google Scholar 

  • Gao B, Moore RY (1996) The sexually dimorphic nucleus of the hypothalamus contains GABA neurons in rat and man. Brain Res 742:163–171

    PubMed  Google Scholar 

  • Geschwind N, Levitsky W (1968) Human brain: left-right asymmetries in temporal speech regions. Science 161:186–187

    PubMed  Google Scholar 

  • Giedd J, Snell J, Lange N, Rafapakse J, Kaysen D, Vaituzis C, Vauss R, Hamburger S, Kozuch P, Rapoport J (1996) Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cerebral Cortex 6:551–560

    PubMed  Google Scholar 

  • Goldstein JM, Seidman LJ, Horton NJ, Makris N, Kennedy DN, Caviness VS, Faraone SV, Tsuang MT (2001) Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb Cortex 11:490–497

    PubMed  Google Scholar 

  • Gorski RA, Gordon JH, Shryne JE, Southam AM (1978) Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Res 148:333–346

    PubMed  Google Scholar 

  • Guillamön A, Segovia S (1997) Sex differences in the vomeronasal system. Brain Res Bull 44:377–382

    PubMed  Google Scholar 

  • Güntürkün O, Hausmann M (2003) The dual coding hypothesis of human cerebral asymmetries. J Neurol Sci (Turk) 20:140–150

    Google Scholar 

  • Habib M, Robichon F (2003) Structural correlates of brain asymmetry: studies in left-handed and dyslexic individuals In: Hugdahl K, Davidson RJ (eds)The asymmetrical brain, 2nd ed. MIT, Cambridge, pp 681–716

    Google Scholar 

  • Hampson E (1990) Variations in sex related cognitive abilities across the menstrual cycle. Brain and Cognition 14:26–43

    PubMed  Google Scholar 

  • Hausmann M (2005) Hemispheric asymmetry in spatial attention across the menstrual cycle. Neuropsychologia 43:1559–1567

    PubMed  Google Scholar 

  • Hausmann M, Güntürkün O (1999) Sex differences in functional cerebral asymmetries in a repeated measures design. Brain and Cognition 41:263–275

    PubMed  Google Scholar 

  • Hausmann M, Güntürkün O (2000) Steroid fluctuations modify functional cerebral asymmetries: The hypothesis of progesterone-mediated interhemispheric decoupling. Neuropsychologia 38:1362–1374

    PubMed  Google Scholar 

  • Hausmann M, Becker C, Gather U, Güntürkün O (2002) Functional cerebral asymmetries during the menstrual cycle: a cross-sectional and longitudinal analysis. Neuropsychologia 40:808–816

    PubMed  Google Scholar 

  • Hausmann M, Tegenthoff M, Sänger J, Janssen F, Güntürkün O, Schwenkreis P (2006) Transcallosal inhibition across the menstrual cycle: A TMS study. Clin Neurophysiol 117:26–32

    PubMed  Google Scholar 

  • Hellige JB (1993) Hemispheric asymmetry: what’s right and what’s left. Harvard University Press, Cambridge

    Google Scholar 

  • Heister G, Landis T, Regard M, Schroeder-Heister P(1989) Shift of functional cerebral asymmetry during the menstrual cycle. Neuropsychologia 27:871–880

    PubMed  Google Scholar 

  • Hines M (2004) Brain gender. Oxford University Press, Oxford

    Google Scholar 

  • Holländer A, Hausmann M, Hamm JP, Corballis MC (2005) Sex hormonal modulation of hemispheric asymmetries in the attentional blink. Journal of the International Neuropsychological Society 11:263–272

    PubMed  Google Scholar 

  • Holloway RL, Anderson PJ, Defendini R, Harper C (1993) Sexual dimorphism of the human corpus callosum from three independent samples: relative size of the corpus callosum. American Journal of Physical Anthropology 92:481–498

    PubMed  Google Scholar 

  • Hopper KD, Patel S, Cann TS, Wilcox T, Schaeffer JM (1994) The relationship of age, gender, handedness, and sidedness to the size of the corpus callosum. Academic Radiology 1:243–248

    PubMed  Google Scholar 

  • Hugdahl K, Davidson RJ (2002) Brain asymmetry, 2nd ed. MIT Press, Cambridge

    Google Scholar 

  • Hutsler J, Galuske RA (2003) Hemispheric asymmetries in cerebral cortical networks. Trends Neurosci 26:429–435

    PubMed  Google Scholar 

  • Inglis J, Lawson JS (1981) Sex differences in the effects of unilateral brain damage on intelligence. Science 212:693–695

    PubMed  Google Scholar 

  • Innocenti GM (1980) The primary visual pathway through the corpus callosum: morphological and functional aspects in the cat. Arch Ital Biol 118:124–188

    PubMed  Google Scholar 

  • Ivanovic DM, Leiva BP, Castro CG, Olivares, M G, Jansana, J M M, Castro, V G, Almagia AAF, Toro TD, Urrutia MSC, Miller PT, Bosch EO, Larrain CG, Perez HT (2004) Brain development parameters and intelligence in Chilean high school graduates. Intell 32:461–479

    Google Scholar 

  • Jacobson CD, Gorski RA (1981) Neurogenesis of the sexually dimorphic nucleus of the preoptic area in the rat. J Comp Neurol 196:519–529

    PubMed  Google Scholar 

  • Jäncke L, Staiger JF, Schlaug G, Huang Y, Steinmetz H (1997) The relationship between corpus callosum size and forebrain volume. Cerebral Cortex 7:48–56

    PubMed  Google Scholar 

  • Kawaguchi Y (1992) Receptor subtypes involved in callosalinduced postsynaptic potentials in rat frontal agranular cortex in vitro. Exp Brain Res 88:33–40

    PubMed  Google Scholar 

  • Kawata M (1995) Roles of steroid hormones and their receptors in structural organization in the nervous system. Neurosci Rev 24:1–46

    Google Scholar 

  • Kelliher KR, Liu YC, Baum MJ, Sachs BD (1999) Neuronal Fos activation in olfactory bulb and forebrain of male rats having erections in the presence of inaccessible estrous females. Neurosci 92:1025–1033

    Google Scholar 

  • Keverne EB (2002) Pheromones, vomeronasal function, and gender-specific behavior. Cell 108 735–738

    PubMed  Google Scholar 

  • Keysers C, Diekamp B, Güntürkün O (2000) Evidence for asymmetres in the phasic intertectal interactions in the pigeon (Columba livia) and their potential role in brain lateralisation. Brain Res 852:406–413

    PubMed  Google Scholar 

  • Knecht M, Kuhnau D, Huttenbrink KB, Witt M, Hummel T (2001) Frequency and localization of the putative vomeronasal organ in humans in relation to age and gender. Laryngoscope 111:448–452

    PubMed  Google Scholar 

  • Kruijver FP, Balesar R, Espila AM, Unmehopa UA, Swaab DF (2003) Estrogen-receptor-beta distribution in the human hypothalamus: similarities and differences with ER alpha distribution. J Comp Neurol 466:251–277

    PubMed  Google Scholar 

  • Kulynych JJ, Vladar K, Jones DW, Weinberger DR (1994) Gender differences in the normal lateralization of the supratemporal cortex: MRI surface-rendering morphometry of Heschl’s gyrus and the planum temporale. Cerebral Cortex 4:107–118

    PubMed  Google Scholar 

  • Lemaitre H, Crivello F, Grassiot B, Alperovitch A, Tzourio C, Mazoyer MB (2005) Age-and sex-related effects on the neuroanatomy of healthy elderly. Neuroimage 26:900–911

    PubMed  Google Scholar 

  • LeVay SA (1991) difference in hypothalamic structure between heterosexual and homosexual men. Science 253:1034–1037

    PubMed  Google Scholar 

  • Liang KC, Bennett C, McGaugh JL (1985) Peripheral epinephrine modulates the effects of post-training amygdala stimulation on memory. Behav Brain Res 15:93–100

    PubMed  Google Scholar 

  • Liang KC, Juler RG, McGaugh JL (1986) Modulating effects of posttraining epinephrine on memory: involvement of the amygdala noradrenergic system. Brain Res 368:125–133

    PubMed  Google Scholar 

  • Liu YC, Salamone JD, Sachs BD (1997) Lesions in medial preoptic area and bed nucleus of stria terminalis: differential effects on copulatory behavior and noncontact erection in male rats, J Neurosci 17:5245–5253

    PubMed  Google Scholar 

  • Luders E, Narr KL, Thompson PM, Thompson PM, Rex DE, Jancke L, Steinmetz H, Toga AW (2004) Gender differences in cortical complexity. Nature Neurosci 7:799–800

    PubMed  Google Scholar 

  • Luders E, Narr KL, Thompson PM, Woods RP, Rex DE, Jancke L, Steinmetz H, Toga AW (2005) Mapping cortical gray matter in the young adult brain: effects of gender. Neuroimage 26:493–501

    PubMed  Google Scholar 

  • Lynn R (1994) Sex differences in intelligence and brain size: a paradox resolved. Pers Indiv Diff 17:257–271

    Google Scholar 

  • Mack CM, Fitch RH, Cowell PE, Schrott LM, Denenberg VH (1993) Ovarian estrogen acts to feminize the female rat’s corpus callosum. Developmental Brain Research 71:115–119

    PubMed  Google Scholar 

  • Mackintosh NJ (1998) Reply to Lynn. J Biosoc Sci 30:533–539

    Google Scholar 

  • Marzi CA, Bisiacchi P, Nicoletti R (1991) Is interhemispheric transfer of visuomotor information asymmetric? Evidence from a meta-analysis. Neuropsychologia 29:1163–1277

    PubMed  Google Scholar 

  • Mas M (1995) Neurobiological correlates of masculine sexual behavior. Neurosci Biobehav Rev 19:261–277

    PubMed  Google Scholar 

  • Matano S, Nakano Y (1998) Size comparison of the male and female human corpus callosum from autopsy samples. Zeitschrift für Morphologie und Anthropologie 82:67–73

    PubMed  Google Scholar 

  • McCarty R, Gold PE (1981) Plasma catecholamines: effects of footshock level and hormonal modulators of memory storage. Horm Behav 15:168–182

    PubMed  Google Scholar 

  • McCarthy MM, Becker JB (2002) Neuroendocrinology of sexual behavior in the female. In: Becker JB, Breedlove SM, Crews D, McCarthy MM (eds) Behavioral endocrinology. MIT Press, Cambridge, pp 117–151

    Google Scholar 

  • McClintock MK (1984) Estrous synchrony: Modulation of ovarian cycle length by female pheromones. Physiol Behav 32:701–705

    PubMed  Google Scholar 

  • McCourt ME, Mark VW, Radonovich KJ, Willison SK, Freeman P (1997) The effects of gender, menstrual phase and practice on the perceived location of the midsagittal plane. Neuropsychologia 35:717–724

    PubMed  Google Scholar 

  • McGaugh JL (1983) Hormonal influences on memory. Annu Rev Psychol 34:297–323

    PubMed  Google Scholar 

  • McGaugh JL, Cahill L, Roozendaal B (1996) Involvement of the amygdala in memory storage: Interaction with other brain systems. Proc Natl Acad Sci USA 93:3508–13514

    Google Scholar 

  • McGlone J (1977) Sex differences in the cerebral organization of verbal functions in patients with unilateral brain lesions. Brain 100:775–793

    PubMed  Google Scholar 

  • McGlone J (1980) Sex differences in human brain asymmetry: A critical survey. Behavioral and Brain Sciences 3:215–263

    Google Scholar 

  • Mead LA, Hampson E (1996) Asymmetric effects of ovarian hormones on hemisphericactivity: Evidence from dichotic and tachistoscopic tests. Neuropsychology 10:578–587

    Google Scholar 

  • Meinschaefer J, Hausmann M, Güntürkün O (1999) Laterality effects in the processing of syllable structure. Brain and Language 70:287–293

    PubMed  Google Scholar 

  • Moffat SD, Hampson E, Lee DH (1998) Morphology of the planum temporale and the corpus callosum in left handers with evidence of left and right hemisphere speech representation. Brain 121:2369–2379

    PubMed  Google Scholar 

  • Moffat SD, Hampson E, Wickett JC, Vernon PA, Lee DH (1997) Testosterone is correlated with regional morphology of the human corpus callosum. Brain Research 767:297–304

    PubMed  Google Scholar 

  • Nalcaci E, Basar-Eroglu C, Stadler M (1999) Visual evoked potential interhemispheric transfer time in different frequency bands. Clin Neurophysiol 110:71–81

    PubMed  Google Scholar 

  • Nopoulos P, Flaum M, O’Leary D, Andreasen NC (2000) Sexual dimorphism in the human brain: evaluation of tissue volume, tissue composition and surface anatomy using magnetic resonance imaging. Psychiat Res Imag 98:1–13

    Google Scholar 

  • Novicka A, Grabowska A, Fersten E (1996) Interhemispheric transmission of information and functional asymmetry of the human brain. Neuropsychologia 34:147–151

    Google Scholar 

  • Nunez JL, Juraska JM (1998) The size of the splenium of the rat corpus callosum: influence of hormones, sex ratio, and neonatal cryoanethesia. Developmental Psychobiology 33:295–303

    PubMed  Google Scholar 

  • Oka S, Miyamoto O, Janjua NA, Honjo-Fujiwara N, Ohkawa M, Nagao S, Kondo H, Minami T, Toyoshima T, Itano T (1999) Re-evaluation of sexual dimorphism in human corpus callosum. Neuroreport 10:937–940

    PubMed  Google Scholar 

  • Pakkenberg B, Gundersen HJG (1997) Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 384:312–320

    PubMed  Google Scholar 

  • Pilgrim C, Hutchison JB (1994) Developmental regulation of sex differences in the brain: can the role of gonadal steroids be redefined? Neurosci 60:843–855

    Google Scholar 

  • Poffenberger AT (1912) Reaction time to retinal stimulation with special reference to the time lost in conduction through nerve centres. Archives of Psychology 23:1–73

    Google Scholar 

  • Raisman G, Field PM(1971) Sexual dimorphism in the preoptic area of the rat. Science 173:731–733

    PubMed  Google Scholar 

  • Rand MN, Breedlove SM (1987) Ontogeny of functional innervation of bulbocavernosus muscles in male and female rats. Brain Res 430:150–152

    PubMed  Google Scholar 

  • Rasmjou S, Hausmann M, Güntürkün O (1999) Hemispheric dominance and gender in the perception of an illusion. Neuropsychologia 37:1041–1047

    PubMed  Google Scholar 

  • Raz N, Gunning-Dixon F, Head D, Rodrigue KM, Williamson A, Acker JD (2004) Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: replicability of regional differences in volume. Neurobiol Aging 25:377–396

    PubMed  Google Scholar 

  • Rode C, Wagner M, Güntürkün O (1995) Menstrual cycle affects functional cerebral asymmetries. Neuropsychologia 33:855–865

    PubMed  Google Scholar 

  • Sanders G, Wenmoth D (1998) Verbal and music dichotic listening task reveal variations in functional cerebral asymmetry across the menstrual cycle that are phase and task dependent. Neuropsychologia 36:869–874

    PubMed  Google Scholar 

  • Savic I, Berglund H, Lindström P (2005) Brainresponses to putative pheromones in homosexual men. Proc Natl Acad Sci USA 102:7356–7361

    PubMed  Google Scholar 

  • Smith TD, Siegel MI, Mooney MR, Burdi AR, Burrows AM, Todhunter JS (1997) Prenatal growth of the human vomeronasal organ. Anat Rec 248:447–455

    PubMed  Google Scholar 

  • Shapleske J, Rossel SL, Woodruff PW, David, AS (1999) The planum temporale: a systematic, quantitative review of its structural, functional and clinical significance. Brain Research Review 29:26–49

    Google Scholar 

  • Skiba M, Diekamp B, Prior H, Güntürkün O (2000) Lateralized interhemispheric transfer of color cues: evidence of dynamic coding principles of visual lateralization in pigeons. Brain Lang 73:254–273

    PubMed  Google Scholar 

  • Smith SS, Waterhouse BD, Chapin JK, Woodward DJ (1987a) Progesterone alters GABA and glutamate responsiveness: a possible mechanism for its anxiolytic action. Brain Res 400:353–359

    PubMed  Google Scholar 

  • Smith SS, Waterhouse BD, Woodward DJ (1987b) Locally applied progesterone metabolites alter neuronal responsiveness in the cerebellum. Brain Res Bull 18:739–747

    PubMed  Google Scholar 

  • Smith SS, Waterhouse BD, Woodward DJ (1988) Locally applied estrogens potentiate glutamate-evoked excitation of cerebral Purkinje cells. Brain Res 475:272–282

    PubMed  Google Scholar 

  • Steinmetz H, Jäncke L, Kleinschmidt A, Schlaug G, Volkmann J, Huang Y (1992) Sex but no hand difference in the isthmus of the corpus callosum. Neurol 42:749–752

    Google Scholar 

  • Swaab DF, Gooren LJ, Hofman MA (1992) The human hypothalamus in relation to gender and sexual orientation. Progr Brain Res 93:205–217

    Google Scholar 

  • Tomasch J (1954) Size, distribution, and number of fibers in the human corpus callosum. Anat Rec 119:119–135

    PubMed  Google Scholar 

  • Toyama K, Matsunami K (1976) Convergence of specific visual and commissural impulses upon inhibitory interneurons of the cat’s visual cortex. Neurosci 1:107–112

    Google Scholar 

  • Voyer D (1996) On the magnitude of laterality effects and sex differences in functional literalities. Laterality 1:51–83

    PubMed  Google Scholar 

  • Weis S, Weber G, Wenger E, Kimbacher M (1989) The controversy about a sexual dimorphism of the human corpus callosum International. Journal of Neuroscience 47:169–173

    Google Scholar 

  • Wickett JC, Vernon PA, Lee, DH (2000) Relationship between factors of intelligence and brain volume. Pers Indiv Diff 29:1095–1122

    Google Scholar 

  • Witelson SF, Glezer II, Kigar DL (1995) Women have greater density of neurons in the posterior temporal cortex. Journal of Neuroscience 15:3418–3428

    PubMed  Google Scholar 

  • Witelson SF, Kigar DL (1992) Sylvian fissure morphology and asymmetry in men and women: Bilateral differences in relation to handedness in men. Journal of Comparitive Neurology 323:175–182

    Google Scholar 

  • Wood RJ, Newman SW (1993) Mating activates androgen receptor containing neurons in chemosensory pathways of the male Syrian hamster brain. Brain Res 614:65–77

    PubMed  Google Scholar 

  • Zaidel E, Aboitiz F, Clarke J (1995) Sexual dimorphism in interhemispheric relations: anatomical-behavioral convergence. Biological Research 28:27–43

    PubMed  Google Scholar 

  • Zhang J, Webb DM (2003) Evolutionary deterioration of the vomeronasal pheromone transduction pathway in catarrhine primates. Proc Natl, Acad Sci USA 100:8337–8341

    Google Scholar 

  • Zhou J, Hofman MA, Gooren LJG, Swaab DF (1995) A sex difference in the human brain and its relation to transsexuality. Nature 378:68–70

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Güntürkün, O., Hausmann, M. (2007). Funktionelle Hirnorganisation und Geschlecht. In: Lautenbacher, S., Güntürkün, O., Hausmann, M. (eds) Gehirn und Geschlecht. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71628-0_5

Download citation

Publish with us

Policies and ethics