Skip to main content

Genetic Determinants and Pharmacogenetics of Osteoporosis and Osteoporotic Fracture

  • Chapter
  • First Online:
Osteoporosis

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

In contrast to Mendelian diseases that are usually caused by a mutation in a single gene, common diseases and disease-associated quantitative traits such as osteoporotic fractures and BMD do not segregate in a Mendelian manner within families and are influenced by multiple genetic and environmental factors. Estimated from twins and siblings, the narrow-sense genetic heritability h2 of BMD is >0.50, suggesting a strong genetic contribution to the risk of osteoporosis. BMD is considered as one of the highly heritable disease-associated quantitative traits. The feasibility of carrying out genome-wide association studies (GWAS) on common variants has led to rapid progress in the field of complex-disease genetics, and provided valuable information about the contribution of genetic variants to phenotypes. In the past 10 years, GWAS have identified ~604 GWAS loci that are associated with bone-health-related phenotypes; including DXA-derived area BMD; qCT-derived volumetric BMD; estimated BMD (eBMD) and heel bone properties from heel quantitative ultrasound; bone geometry, shape, and microstructure; osteoporotic fractures and nonunion; pediatric bone density; serum vitamin D and other serum bone biomarkers. The discovery of underlying genetic determinants may create opportunities for novel diagnostics and drug targets to support a personalized approach to treating osteoporosis and prevent osteoporotic fracture. Although several osteoporotic medications have shown to be effective in reducing the risk of fracture in postmenopausal women and are recommended as the first-line therapies for patients with osteoporosis, the response to these anti-osteoporotic therapies is highly variable among individuals and such variability may also be partly determined by genetic factors. Pharmacogenetics is the study of the genetic variation between individuals that affects their response to drugs as well as treatment-related adverse effects, such as osteonecrosis of the jaw (ONJ) and atypical femoral fractures (AFF). In this chapter, we review and discuss findings from GWAS along with pharmacogenetics studies of osteoporotic treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Christian JC, Yu PL, Slemenda CW, Johnston CC Jr. Heritability of bone mass: a longitudinal study in aging male twins. Am J Hum Genet. 1989;44:429–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ralston SH, de Crombrugghe B. Genetic regulation of bone mass and susceptibility to osteoporosis. Genes Dev. 2006;20:2492–506.

    Article  CAS  PubMed  Google Scholar 

  3. Ralston SH, Uitterlinden AG. Genetics of osteoporosis. Endocr Rev. 2010;31:629–62.

    Article  CAS  PubMed  Google Scholar 

  4. Wang K, Gaitsch H, Poon H, Cox NJ, Rzhetsky A. Classification of common human diseases derived from shared genetic and environmental determinants. Nat Genet. 2017;49:1319–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hsu YH, Kiel DP. Clinical review: genome-wide association studies of skeletal phenotypes: what we have learned and where we are headed. J Clin Endocrinol Metab. 2012;97:E1958–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hindorff LA, Sethupathy P, Junkins HA, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009;106:9362–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Delmas P, Rizzoli R, Cooper C, Reginster J. Treatment of patients with postmenopausal osteoporosis is worthwhile. The position of the international osteoporosis foundation. Osteoporos Int. 2005;16:1–5.

    Article  PubMed  Google Scholar 

  8. Diez-Perez A, Adachi JD, Agnusdei D, et al. Treatment failure in osteoporosis. Osteoporos Int. 2012;23:2769–74.

    Article  CAS  PubMed  Google Scholar 

  9. Murad MH, Drake MT, Mullan RJ, et al. Clinical review. Comparative effectiveness of drug treatments to prevent fragility fractures: a systematic review and network meta-analysis. J Clin Endocrinol Metab. 2012;97:1871–80.

    Article  CAS  PubMed  Google Scholar 

  10. Hsu YH, Zillikens MC, Wilson SG, et al. An integration of genome-wide association study and gene expression profiling to prioritize the discovery of novel susceptibility loci for osteoporosis-related traits. PLoS Genet. 2010;6:e1000977.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kung AW, Xiao SM, Cherny S, et al. Association of JAG1 with bone mineral density and osteoporotic fractures: a genome-wide association study and follow-up replication studies. Am J Hum Genet. 2010;86:229–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rivadeneira F, Styrkarsdottir U, Estrada K, et al. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet. 2009;41:1199–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Richards JB, Rivadeneira F, Inouye M, et al. Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet. 2008;371:1505–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, et al. Multiple genetic loci for bone mineral density and fractures. N Engl J Med. 2008;358:2355–65.

    Article  CAS  PubMed  Google Scholar 

  15. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, et al. New sequence variants associated with bone mineral density. Nat Genet. 2009;41:15–7.

    Article  CAS  PubMed  Google Scholar 

  16. Estrada K, Styrkarsdottir U, Evangelou E, et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet. 2012;44:491–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang L, Choi HJ, Estrada K, et al. Multistage genome-wide association meta-analyses identified two new loci for bone mineral density. Hum Mol Genet. 2014;23:1923–33.

    Article  CAS  PubMed  Google Scholar 

  18. Zheng HF, Forgetta V, Hsu YH, et al. Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature. 2015;526:112–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pei YF, Hu WZ, Hai R, et al. Genome-wide association meta-analyses identified 1q43 and 2q32.2 for hip Ward’s triangle areal bone mineral density. Bone. 2016;91:1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pei YF, Xie ZG, Wang XY, et al. Association of 3q13.32 variants with hip trochanter and intertrochanter bone mineral density identified by a genome-wide association study. Osteoporos Int. 2016;27:3343–54.

    Article  CAS  PubMed  Google Scholar 

  21. Mullin BH, Walsh JP, Zheng HF, et al. Genome-wide association study using family-based cohorts identifies the WLS and CCDC170/ESR1 loci as associated with bone mineral density. BMC Genomics. 2016;17:136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Pei YF, Hu WZ, Yan MW, et al. Joint study of two genome-wide association meta-analyses identified 20p12.1 and 20q13.33 for bone mineral density. Bone. 2018;110:378–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Choi HJ, Park H, Zhang L, et al. Genome-wide association study in East Asians suggests UHMK1 as a novel bone mineral density susceptibility gene. Bone. 2016;91:113–21.

    Article  CAS  PubMed  Google Scholar 

  24. Taylor KC, Evans DS, Edwards DRV, et al. A genome-wide association study meta-analysis of clinical fracture in 10,012 African American women. Bone Reports. 2016;5:233–42.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zheng HF, Duncan EL, Yerges-Armstrong LM, et al. Meta-analysis of genome-wide studies identifies MEF2C SNPs associated with bone mineral density at forearm. J Med Genet. 2013;50:473–8.

    Article  CAS  PubMed  Google Scholar 

  26. Kemp JP, Medina-Gomez C, Estrada K, et al. Phenotypic dissection of bone mineral density reveals skeletal site specificity and facilitates the identification of novel loci in the genetic regulation of bone mass attainment. PLoS Genet. 2014;10:e1004423.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Medina-Gomez C, Kemp JP, Trajanoska K, et al. Life-course genome-wide association study meta-analysis of total body BMD and assessment of age-specific effects. Am J Hum Genet. 2018;102:88–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Styrkarsdottir U, Thorleifsson G, Sulem P, et al. Nonsense mutation in the LGR4 gene is associated with several human diseases and other traits. Nature. 2013;497:517–20.

    Article  CAS  PubMed  Google Scholar 

  29. Styrkarsdottir U, Thorleifsson G, Eiriksdottir B, et al. Two rare mutations in the COL1A2 gene associate with low bone mineral density and fractures in Iceland. J Bone Miner Res. 2016;31:173–9.

    Article  CAS  PubMed  Google Scholar 

  30. Styrkarsdottir U, Thorleifsson G, Gudjonsson SA, et al. Sequence variants in the PTCH1 gene associate with spine bone mineral density and osteoporotic fractures. Nat Commun. 2016;7:10129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hsu YH, Li G, Liu CT, et al. Targeted sequencing of genome wide significant loci associated with bone mineral density (BMD) reveals significant novel and rare variants: the cohorts for heart and aging research in genomic epidemiology (CHARGE) targeted sequencing study. Hum Mol Genet. 2016;25:5234–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Paternoster L, Lorentzon M, Lehtimaki T, et al. Genetic determinants of trabecular and cortical volumetric bone mineral densities and bone microstructure. PLoS Genet. 2013;9:e1003247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nielson CM, Liu CT, Smith AV, et al. Novel genetic variants associated with increased vertebral volumetric BMD, reduced vertebral fracture risk, and increased expression of SLC1A3 and EPHB2. J Bone Miner Res. 2016;31:2085–97.

    Article  CAS  PubMed  Google Scholar 

  34. Kemp JP, Morris JA, Medina-Gomez C, et al. Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis. Nat Genet. 2017;49:1468–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim SK. Correction: identification of 613 new loci associated with heel bone mineral density and a polygenic risk score for bone mineral density, osteoporosis and fracture. PLoS One. 2019;14:e0213962.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Morris JA, Kemp JP, Youlten SE, et al. An atlas of genetic influences on osteoporosis in humans and mice. Nat Genet. 2019;51:258–66.

    Article  CAS  PubMed  Google Scholar 

  37. Moayyeri A, Hsu YH, Karasik D, et al. Genetic determinants of heel bone properties: genome-wide association meta-analysis and replication in the GEFOS/GENOMOS consortium. Hum Mol Genet. 2014;23:3054–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hwang JY, Kim YJ, Choi BY, Kim BJ, Han BG. Meta analysis identifies a novel susceptibility locus associated with heel bone strength in the Korean population. Bone. 2016;84:47–51.

    Article  PubMed  Google Scholar 

  39. Lu HF, Hung KS, Chu HW, et al. Meta-analysis of genome-wide association studies identifies three loci associated with stiffness index of the calcaneus. J Bone Miner Res. 2019:e3703.

    Google Scholar 

  40. Baird DA, Evans DS, Kamanu FK, et al. Identification of novel loci associated with hip shape: a meta-analysis of genomewide association studies. J Bone Miner Res. 2019;34:241–51.

    Article  CAS  PubMed  Google Scholar 

  41. Hsu YH, Estrada K, Evangelou E, et al. Meta-analysis of genomewide association studies reveals genetic variants for hip bone geometry. J Bone Miner Res. 2019;34(7):1284–96.

    Article  CAS  PubMed  Google Scholar 

  42. Alonso N, Estrada K, Albagha OME, et al. Identification of a novel locus on chromosome 2q13, which predisposes to clinical vertebral fractures independently of bone density. Ann Rheum Dis. 2018;77:378–85.

    Article  CAS  PubMed  Google Scholar 

  43. Hwang JY, Lee SH, Go MJ, et al. Meta-analysis identifies a MECOM gene as a novel predisposing factor of osteoporotic fracture. J Med Genet. 2013;50:212–9.

    Article  CAS  PubMed  Google Scholar 

  44. Trajanoska K, Morris JA, Oei L, et al. Assessment of the genetic and clinical determinants of fracture risk: genome wide association and mendelian randomisation study. BMJ. 2018;362:k3225.

    Article  PubMed  PubMed Central  Google Scholar 

  45. McCoy TH Jr, Fragomen AT, Hart KL, Pellegrini AM, Raskin KA, Perlis RH. Genomewide association study of fracture nonunion using electronic health records. JBMR Plus. 2019;3:23–8.

    Article  PubMed  Google Scholar 

  46. Chesi A, Mitchell JA, Kalkwarf HJ, et al. A trans-ethnic genome-wide association study identifies gender-specific loci influencing pediatric aBMD and BMC at the distal radius. Hum Mol Genet. 2015;24:5053–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mitchell JA, Chesi A, Cousminer DL, et al. Multidimensional bone density phenotyping reveals new insights into genetic regulation of the pediatric skeleton. J Bone Miner Res. 2018;33:812–21.

    Article  CAS  PubMed  Google Scholar 

  48. Chesi A, Mitchell JA, Kalkwarf HJ, et al. A genomewide association study identifies two sex-specific loci, at SPTB and IZUMO3, influencing pediatric bone mineral density at multiple skeletal sites. J Bone Miner Res. 2017;32:1274–81.

    Article  CAS  PubMed  Google Scholar 

  49. Manousaki D, Dudding T, Haworth S, et al. Low-frequency synonymous coding variation in CYP2R1 has large effects on vitamin D levels and risk of multiple sclerosis. Am J Hum Genet. 2017;101:227–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jiang X, O’Reilly PF, Aschard H, et al. Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels. Nat Commun. 2018;9:260.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. O’Brien KM, Sandler DP, Shi M, Harmon QE, Taylor JA, Weinberg CR. Genome-wide association study of serum 25-Hydroxyvitamin D in US women. Front Genet. 2018;9:67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Sapkota BR, Hopkins R, Bjonnes A, et al. Genome-wide association study of 25(OH) Vitamin D concentrations in Punjabi Sikhs: results of the Asian Indian diabetic heart study. J Steroid Biochem Mol Biol. 2016;158:149–56.

    Article  CAS  PubMed  Google Scholar 

  53. Hong J, Hatchell KE, Bradfield JP, et al. Transethnic evaluation identifies low-frequency loci associated with 25-Hydroxyvitamin D concentrations. J Clin Endocrinol Metab. 2018;103:1380–92.

    Article  PubMed  PubMed Central  Google Scholar 

  54. O’Seaghdha CM, Wu H, Yang Q, et al. Meta-analysis of genome-wide association studies identifies six new loci for serum calcium concentrations. PLoS Genet. 2013;9:e1003796.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kuipers AL, Gundberg C, Kammerer CM, et al. Genetic analysis of serum osteocalcin and bone mineral in multigenerational afro-Caribbean families. Osteoporos Int. 2012;23:1521–31.

    Article  CAS  PubMed  Google Scholar 

  56. Robinson-Cohen C, Lutsey PL, Kleber ME, et al. Genetic variants associated with circulating parathyroid hormone. J Am Soc Nephrol. 2017;28:1553–65.

    Article  CAS  PubMed  Google Scholar 

  57. Robinson-Cohen C, Bartz TM, Lai D, et al. Genetic variants associated with circulating fibroblast growth factor 23. J Am Soc Nephrol. 2018;29:2583–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bauer DC, Ewing SK, Cauley JA, et al. Quantitative ultrasound predicts hip and non-spine fracture in men: the MrOS study. Osteoporos Int. 2007;18:771–7.

    Article  CAS  PubMed  Google Scholar 

  59. Moayyeri A, Adams JE, Adler RA, et al. Quantitative ultrasound of the heel and fracture risk assessment: an updated meta-analysis. Osteoporos Int. 2012;23:143–53.

    Article  CAS  PubMed  Google Scholar 

  60. Gonnelli S, Cepollaro C, Gennari L, et al. Quantitative ultrasound and dual-energy X-ray absorptiometry in the prediction of fragility fracture in men. Osteoporos Int. 2005;16:963–8.

    Article  PubMed  Google Scholar 

  61. Michaelsson K, Melhus H, Ferm H, Ahlbom A, Pedersen NL. Genetic liability to fractures in the elderly. Arch Intern Med. 2005;165:1825–30.

    Article  PubMed  Google Scholar 

  62. Zura R, Xiong Z, Einhorn T, et al. Epidemiology of fracture nonunion in 18 human bones. JAMA Surg. 2016;151:e162775.

    Article  PubMed  Google Scholar 

  63. Forrest KY, Stuhldreher WL. Prevalence and correlates of vitamin D deficiency in US adults. Nutr Res. 2011;31:48–54.

    Article  CAS  PubMed  Google Scholar 

  64. Reid IR, Vitamin D. Effect on bone mineral density and fractures. Endocrinol Metab Clin N Am. 2017;46:935–45.

    Article  Google Scholar 

  65. Adamska M, MacDonald BT, Sarmast ZH, Oliver ER, Meisler MH. En1 and Wnt7a interact with Dkk1 during limb development in the mouse. Dev Biol. 2004;272:134–44.

    Article  CAS  PubMed  Google Scholar 

  66. Deckelbaum RA, Majithia A, Booker T, Henderson JE, Loomis CA. The homeoprotein engrailed 1 has pleiotropic functions in calvarial intramembranous bone formation and remodeling. Development. 2006;133:63–74.

    Article  CAS  PubMed  Google Scholar 

  67. Malinauskas T, Jones EY. Extracellular modulators of Wnt signalling. Curr Opin Struct Biol. 2014;29:77–84.

    Article  CAS  PubMed  Google Scholar 

  68. Campos-Xavier AB, Martinet D, Bateman J, et al. Mutations in the heparan-sulfate proteoglycan glypican 6 (GPC6) impair endochondral ossification and cause recessive omodysplasia. Am J Hum Genet. 2009;84:760–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee HK, Chaboub LS, Zhu W, et al. Daam2-PIP5K is a regulatory pathway for Wnt signaling and therapeutic target for remyelination in the CNS. Neuron. 2015;85:1227–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cosman F, Beur SJ, LeBoff MS, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporosis Int. 2014;25(10):2359–81.

    Article  CAS  Google Scholar 

  71. Tymlos (abaloparatide) prescribing information. Waltham: Radius Health, Inc; 2017.

    Google Scholar 

  72. Carano A, Teitelbaum S, Konsek J, Schlesinger P, Blair H. Bisphosphonates directly inhibit the bone resorption activity of isolated avian osteoclasts in vitro. J Clin Invest. 1990;85:456–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Neer R, Arnaud C, Zanchetta J, et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344:1434–41.

    Article  CAS  PubMed  Google Scholar 

  74. Markham A. Romosozumab: first global approval. 2019;79(4):471–6.

    Google Scholar 

  75. Camacho P, Petak S, Binkley N, et al. American Association of Clinical Endocrinologists and American College of Endocrinology: clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis. Endocr Pract. 2016;22:S1–S42.

    Article  Google Scholar 

  76. Yahata T, Quan J, Tamura N, Nagata H, Kurabayashi T, Tanaka K. Association between single nucleotide polymorphisms of estrogen receptor alpha gene and efficacy of HRT on bone mineral density in post-menopausal Japanese women. Hum Reprod. 2005;20:1860–6.

    Article  CAS  PubMed  Google Scholar 

  77. Rapuri P, Gallagher J, Knezetic J, Haynatzka V. Estrogen receptor alpha gene polymorphisms are associated with changes in bone remodeling markers and treatment response to estrogen. Maturitas. 2006;53:371–9.

    Article  CAS  PubMed  Google Scholar 

  78. Ongphiphadhanakul B, Chanprasertyothin S, Payatikul P, et al. Oestrogen-receptor-alpha gene polymorphism affects response in bone mineral density to oestrogen in post-menopausal women. Clin Endocrinol. 2000;52:581–5.

    Article  CAS  Google Scholar 

  79. Salmén T, Heikkinen A, Mahonen A, et al. The protective effect of hormone-replacement therapy on fracture risk is modulated by estrogen receptor alpha genotype in early postmenopausal women. J Bone Miner Res. 2000;15:2479–86.

    Article  PubMed  Google Scholar 

  80. Kurabayashi T, Tomita M, Matsushita H, et al. Association of vitamin D and estrogen receptor gene polymorphism with the effect of hormone replacement therapy on bone mineral density in Japanese women. Am J Obstet Gynecol. 1999;180:1115–20.

    Article  CAS  PubMed  Google Scholar 

  81. Kurabayashi T, Matsushita H, Tomita M, et al. Association of vitamin D and estrogen receptor gene polymorphism with the effects of longterm hormone replacement therapy on bone mineral density. J Bone Miner Metab. 2004;22:241–7.

    Article  CAS  PubMed  Google Scholar 

  82. Giguère Y, Dodin S, Blanchet C, Morgan K, Rousseau F. The association between heel ultrasound and hormone replacement therapy is modulated by a two-locus vitamin D and estrogen receptor genotype. J Bone Miner Res. 2000;15:1076–84.

    Article  PubMed  Google Scholar 

  83. Simsek M, Cetin Z, Bilgen T, Taskin O, Luleci G, Keser I. Effects of hormone replacement therapy on bone mineral density in Turkish patients with or without COL1A1 Sp1 binding site polymorphism. J Obstet Gynaecol Res. 2008;34:73–7.

    Article  CAS  PubMed  Google Scholar 

  84. Palomba S, Numis F, Mossetti G, et al. Raloxifene administration in post-menopausal women with osteoporosis: effect of different BsmI vitamin D receptor genotypes. Hum Reprod. 2003;18:192–8.

    Article  CAS  PubMed  Google Scholar 

  85. Heilberg I, Hernandez E, Alonzo E, et al. Estrogen receptor (ER) gene polymorphism may predict the bone mineral density response to raloxifene in postmenopausal women on chronic hemodialysis. Ren Fail. 2005;27:155–61.

    Article  CAS  PubMed  Google Scholar 

  86. Marc J, Prezelj J, Komel R, Kocijancic A. VDR genotype and response to etidronate therapy in late postmenopausal women. Osteoporos Int. 1999;10:303–6.

    Article  CAS  PubMed  Google Scholar 

  87. Palomba S, Orio F Jr, Russo T, et al. BsmI vitamin D receptor genotypes influence the efficacy of antiresorptive treatments in postmenopausal osteoporotic women, a 1-year multicenter, randomized and controlled trial. Osteoporos Int. 2005;16:943–52.

    Article  CAS  PubMed  Google Scholar 

  88. Qureshi A, Herd R, Blake G, Fogelman I, Ralston S. COLIA1 Sp1 polymorphism predicts response of femoral neck bone density to cyclical etidronate therapy. Calcif Tissue Int. 2002;70:158–63.

    Article  CAS  PubMed  Google Scholar 

  89. Arko B, Prezelj J, Komel R, Kocijancic A, Marc J. No major effect of estrogen receptor beta gene RsaI polymorphism on bone mineral density and response to alendronate therapy in postmenopausal osteoporosis. J Steroid Biochem Mol Biol. 2002;81:147–52.

    Article  CAS  PubMed  Google Scholar 

  90. Kruk M, Ralston S, Albagha O. LRP5 polymorphisms and response to risedronate treatment in osteoporotic men. Calcif Tissue Int. 2009;84:171–9.

    Article  CAS  PubMed  Google Scholar 

  91. Wang C, He J, Qin Y, et al. Osteoprotegerin gene polymorphism and therapeutic response to alendronate in postmenopausal women with osteoporosis. Honghua Yi Xue Za Zhi. 2009;89:2958–62.

    CAS  Google Scholar 

  92. Kim H, Choe S, Ku S, Kim S, Kim J. Association between Wnt signaling pathway gene polymorphisms and bone response to hormone therapy in postmenopausal Korean women. Menopause. 2011;18:808–13.

    Article  PubMed  Google Scholar 

  93. Adler R. Management of endocrine disease: atypical femoral fractures: risks and benefits of long-term treatment of osteoporosis with anti-resorptive therapy. Eur J Endocrinol. 2018;178:R81–R7.

    Article  CAS  PubMed  Google Scholar 

  94. Reid I. Osteonecrosis of the jaw: who gets it, and why? Bone. 2009;44:4–10.

    Article  CAS  PubMed  Google Scholar 

  95. Sarasquete M, Gonza’lez M, San Miguel J, Garcı’a-Sanz R. Bisphosphonate-related osteonecrosis: genetic and acquired risk factors. Oral Dis. 2009;15:382–7.

    Article  CAS  PubMed  Google Scholar 

  96. Sarasquete M, Garcı’a-Sanz R, Marı’n L, et al. Bisphosphonate-related osteonecrosis of the jaw is associated with polymorphisms of the cytochrome P450 CYP2C8 in multiple myeloma: a genome-wide single nucleotide polymorphism analysis. Blood. 2008;112:2709–12.

    Article  CAS  PubMed  Google Scholar 

  97. Pietschmann P, Rauner M, Sipos W, Kerschan-Schindl K. Osteoporosis: an age-related and gender-specific disease. A mini-review. Gerontology. 2009;55:3–12.

    Article  PubMed  Google Scholar 

  98. Katz J, Gong Y, Salmasinia D, et al. Genetic polymorphisms and other risk factors associated with bisphosphonate induced osteonecrosis of the jaw. Int J Oral Maxillofac Surg. 2011;40:605–11.

    Article  CAS  PubMed  Google Scholar 

  99. Dagdelen S, Sener D, Bayraktar M. Influence of type 2 diabetes mellitus on bone mineral density response to bisphosphonates in late postmenopausal osteoporosis. Adv Ther. 2007;24:1314–20.

    Article  CAS  PubMed  Google Scholar 

  100. Haney E, Bliziotes M. Male osteoporosis: new insights in an understudied disease. Curr Opin Rheumatol. 2008;20:423–8.

    Article  PubMed  Google Scholar 

  101. Marini F, Tonelli P, Cavalli L, Masi L, Falchetti A, Brandi M. Pharmacogenetics of bisphosphonate-associated osteonecrosis of the jaw. Front Biosci (Elite Ed). 2011;3:364–70.

    Google Scholar 

  102. Nicoletti P, Cartsos V, Palaska P, Shen Y, Floratos A, Zavras A. Genomewide pharmacogenetics of bisphosphonate-induced osteonecrosis of the jaw: the role of RBMS3. Oncologist. 2012;17:279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sandro Pereira da Silva J, Pullano E, Raje N, Troulis M, August M. Genetic predisposition for medication-related osteonecrosis of the jaws: a systematic review. Int J Oral Maxillofac Surg. 2019;S0901–5027:31111–7.

    Google Scholar 

  104. Schilcher J, Michaelsson K, Aspenberg P. Bisphosphonate use and atypical fractures of the femoral shaft. N Engl J Med. 2011;364:1728–37.

    Article  CAS  PubMed  Google Scholar 

  105. Schilcher J, Koeppen V, Aspenberg P, Michaëlsson K. Risk of atypical femoral fracture during and after bisphosphonate use. N Engl J Med. 2014;371:974–6.

    Article  PubMed  Google Scholar 

  106. Meier R, Perneger T, Stern R, Rizzoli R, Peter R. Increasing occurrence of atypical femoral fractures associated with bisphosphonate use. Arch Intern Med. 2012;172:930–6.

    PubMed  Google Scholar 

  107. Kharazmi M, Michaëlsson K, Schilcher J, et al. A genome-wide association study of bisphosphonate-associated atypical femoral fracture. Calcif Tissue Int. 2019;105:51–67.

    Article  CAS  PubMed  Google Scholar 

  108. Roca-Ayats N, Balcells S, Garcia-Giralt N, et al. GGPS1 mutation and atypical femoral fractures with bisphosphonates. N Engl J Med. 2017;376:1794–5.

    Article  PubMed  Google Scholar 

  109. Roca-Ayats N, Ng PY, Garcia-Giralt N, et al. Functional characterization of a GGPPS variant identified in atypical femoral fracture patients and delineation of the role of GGPPS in bone-relevant cell types. J Bone Miner Res. 2018;33:2091–8.

    Article  CAS  PubMed  Google Scholar 

  110. Venegas KR, Go’mez MA, Garre MC, Sa’nchez AG, Contreras-Ortega C, Herna’ndez MAC. Pharmacogenetics of osteoporosis: towards novel theranostics for personalized medicine? OMICS. 2012;16:638–51.

    Article  CAS  Google Scholar 

  111. Nelson MR, Tipney H, Painter JL, et al. The support of human genetic evidence for approved drug indications. Nat Genet. 2015;47:856–60.

    Article  CAS  PubMed  Google Scholar 

  112. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nolte IM, van der Most PJ, Alizadeh BZ, et al. Missing heritability: is the gap closing? An analysis of 32 complex traits in the lifelines cohort study. Eur J Hum Genet. 2017;25:877–85.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Maurano MT, Humbert R, Rynes E, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337:1190–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fuchsberger C, Flannick J, Teslovich TM, et al. The genetic architecture of type 2 diabetes. Nature. 2016;536:41–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Danjou F, Zoledziewska M, Sidore C, et al. Genome-wide association analyses based on whole-genome sequencing in Sardinia provide insights into regulation of hemoglobin levels. Nat Genet. 2015;47:1264–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Werling DM, Brand H, An JY, et al. An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder. Nat Genet. 2018;50:727–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Li Z, Li X, Liu Y, et al. Dynamic scan procedure for detecting rare-variant association regions in whole-genome sequencing studies. Am J Hum Genet. 2019;104:802–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Taliun D, Harris DN, Kessler MD, et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. bioRxiv 2019:https://doi.org/10.1101/563866.

  120. Hsu YH, Xu H, Montasser M, et al. A large-Scale Deep-Coverage Whole Genome Sequencing to Identify Less Common and Rare Variants Associated with BMD: The NHLBI Trans-Omics for Precision Medicine (TOPMED) Study. ASBMR Annual Meeting, Sep 20-23, 2019, Orlando, Florida, USA 2019.

    Google Scholar 

  121. DRUGBANK. Edmonton, Canada: Wishart Research Group; 2019.

    Google Scholar 

  122. Kim J, Kim H, Ku S, Suh C, Kim J, Kim J. Polymorphisms in period genes and bone response to hormone therapy in postmenopausal Korean women. Climacteric. 2016;19:85–90.

    Article  CAS  PubMed  Google Scholar 

  123. Marini F, Falchetti A, Silvestri S, et al. Modulatory effect of farnesyl pyrophosphate synthase (FDPS) rs2297480 polymorphism on the response to long-term amino-bisphosphonate treatment in postmenopausal osteoporosis. Curr Med Res Opin. 2008;24:2609–15.

    Article  CAS  PubMed  Google Scholar 

  124. Olmos J, Zarrabeitia M, Hernández J, Sañudo C, González-Macías J, Riancho J. Common allelic variants of the farnesyl diphosphate synthase gene influence the response of osteoporotic women to bisphosphonates. Pharmacogenomics J. 2012;12(3):227–32.

    Article  CAS  PubMed  Google Scholar 

  125. Choi H, Choi J, Cho S, et al. Genetic polymorphism of geranylgeranyl diphosphate synthase (GGSP1) predicts bone density response to bisphosphonate therapy in Korean women. Yonsei Med J. 2010;51:231–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Han L, Ma D, Xu X, et al. Association between geranylgeranyl pyrophosphate synthase gene polymorphisms and bone phenotypes and response to alendronate treatment in Chinese osteoporotic women. Chin Med Sci J. 2016;31:8–16.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Hsiang Hsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hsu, YH., Xu, X., Jeong, S. (2020). Genetic Determinants and Pharmacogenetics of Osteoporosis and Osteoporotic Fracture. In: Leder, B., Wein, M. (eds) Osteoporosis. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-319-69287-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69287-6_25

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-319-69286-9

  • Online ISBN: 978-3-319-69287-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics