Skip to main content

Veränderungen im Kortex nach peripher- und zentral-vestibulären Läsionen

  • Conference paper
Der Gleichgewichtssinn

Zusammenfassung

In den letzten 10 Jahren konnten mit Hilfe der funktionellen Bildgebung des menschlichen Gehirns neue Erkenntnisse zum zentralen Gleichgewichtssystem zunächst bei Gesunden und jetzt auch bei Patienten mit umschriebenen vestibulären Läsionen erarbeitet werden. Basis für diese Untersuchungen waren die Kenntnisse aus neurophysiologischen und Tracer-Studien an Tieren, insbesondere an Macacen, zum vestibulären System im Kortex aus den 70iger bis 90iger Jahren (Schwarz et al. 1973; Ödkvist et al. 1974; Grüsser et al. 1990a, b; Guldin und Grüsser 1996). In diesen Studien konnten mehrere Areale im temporo-parietalen Kortex beschrieben werden, die alle multisensorisch waren, d.h. deren Neurone nicht nur auf vestibuläre Reizung reagierten sondern auch auf somatosensorische und/oder visuelle und ein zusammenhängendes Netzwerk bildeten. Das Zentrum (sog. core region) dieses Netzwerks wurde im parieto-insulären vestibulären Kortex (PIVC) des Macacen beschrieben (Guldin and Grüsser, 1996). Auf die Bedeutung eines „vestibulären Kortex“ beim Menschen deuteten bereits Studien an Patienten mit subkortikalen und kortikalen Läsionen hin (Brandt und Dieterich 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Akbarian S, Grüsser O-J, Guldin WO (1992) Thalamic connections of the vestibular cortical fields in the squirrel monkey (Saimiri sciureus). J Comp Neurol 325: 1–19

    Article  Google Scholar 

  • Bense S, Bartenstein P, Lochmann M, Schlindwein P, Brandt T, Dieterich M (2004) Metabolic changes in vestibular and visual cortices in acute vestibular neuritis. Ann Neurol 56: 624–630

    Article  PubMed  Google Scholar 

  • Bense S, Bartenstein P, Lutz S, Stephan T, Schwaiger M, Brandt T, Dieterich M (2003) Three determinants of vestibular hemispheric dominance during caloric stimulation. Ann N Y Acad Sci 1004: 440–445

    Article  Google Scholar 

  • Bense S, Stephan T, Yousry TA, Brandt T, Dieterich M (2001) Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). Neurophysiol 85: 886–899

    CAS  Google Scholar 

  • Bottini G, Sterzi R, Paulesu E, Vallar G, Cappa SF, Erminio F, Passingham RE, Frith CD, Frackowiak RSJ (1994) Identification of the central vestibular projections in man: a positron emission tomography activation study. Exp Brain Res 99: 164–169

    Article  CAS  PubMed  Google Scholar 

  • Bottini G, Karnath HO, Vallar G, Sterzi R, Frith CD, Frackowiak RS, Paulescu E (2001) Cerebral representations for egocentric space: functional-anatomical evidence from caloric vestibular stimulation and neck vibration. Brain 124: 1182–1196

    Article  CAS  PubMed  Google Scholar 

  • Brandt T, Dieterich M (1999) The vestibular cortex. Its locations, functions, and disorders. Ann N Y Acad Sci 871: 293–312

    Article  CAS  PubMed  Google Scholar 

  • Brandt T, Dieterich M, Strupp M (2005) Vertigo and dizziness — common complaints. Springer, London

    Google Scholar 

  • Brandt T, Bartenstein P, Janek A, Dieterich M (1998) Reciprocal inhibitory visual-vestibular interaction: visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain 121: 1749–1758

    Article  PubMed  Google Scholar 

  • Bremmer F, Schlack A, Duhamel J-R, Graf W, Fink GR (2001) Space coding in primate posterior parietal cortex. Neurolmage 14: 46–51

    Article  Google Scholar 

  • Bucher SF, Dieterich M, Wiesmann M, Weiss A, Zink R, Yousry T, Brandt T (1998) Cerebral functional MRI of vestibular, auditory, and nociceptive areas during galvanic stimulation. Ann Neurol 44: 120–125

    Article  CAS  PubMed  Google Scholar 

  • Büttner U, Henn V (1976) Thalamic unit activity in the alert monkey during natural vestibular stimulation. Brain Res 103: 127–132

    Article  PubMed  Google Scholar 

  • Deecke L, Schwarz DWF, Fredrickson JM (1974) Nucleus ventroposterior inferior (VPI) as the thalamic relay in the rhesus monkey. I. Field potential investigation. Exp Brain Res 20: 88–100

    Article  CAS  PubMed  Google Scholar 

  • Dieterich M (2007) Functional brain imaging: a window into the visuo-vestibular systems. Curr Opin Neurol 20: 12–18

    Article  PubMed  Google Scholar 

  • Dieterich M, Brandt T (1993) Thalamic infarctions: Differential effects on vestibular function in roll plane (35 patients). Neurology 43: 1732–1740

    CAS  PubMed  Google Scholar 

  • Dieterich M, Bartenstein P, Spiegel S, Bense S, Schwaiger M, Brandt T (2005) Thalamic infarctions cause side specific suppression of vestibular cortex activations. Brain 128: 2052–2067

    Article  CAS  PubMed  Google Scholar 

  • Dieterich M, Bense S, Lutz S, Drzezga A, Stephan T, Brandt T, Bartenstein P (2003) Dominance for vestbular cortical function in the non-dominant hemisphere. Cerebral Cortex 13 (9): 994–1007

    Article  CAS  PubMed  Google Scholar 

  • Dieterich M, Bucher SF, Seelos KC, Brandt T (1998) Horizontal or vertical optokinetic stimulation activates visual motion-sensitive, ocular motor, and vestibular cortex areas with right hemispheric dominance: an fMRI study. Brain 121: 1479–1495

    Article  PubMed  Google Scholar 

  • Emri M, Kisely M, Lengyel Z, Balkay L, Marian T, Miko L, Berenyi E, Sziklai I, Tron L, Toth A (2003) Cortical projection of peripheral vestibular signaling. J Neurophysiol 89: 2639–2646

    Article  PubMed  Google Scholar 

  • Fasold O, von Brevern M, Kuhberg M, Ploner CJ, Villringer A, Lempert T, Wenzel R (2002) Human vestibular cortex as identified with caloric stimulation in functional magnetic resonance imaging. Neurolmage 17: 1384–1393.

    Article  Google Scholar 

  • Grüsser OJ, Pause M, Schreiter U (1990a) Localization and responses of neurons in the parieto-insular cortex of awake monkeys (Macaca fascicularis). J Physiol (Lond) 430: 537–557

    Google Scholar 

  • Grüsser OJ, Pause M, Schreiter U (1990b) Vestibular neurones in the parieto-insular cortex of monkeys (Macaca fascicularis): visual and neck receptor responses. J Physiol (Lond) 430: 559–583

    Google Scholar 

  • Guldin WO, Grüsser OJ (1996) The anatomy of the vestibular cortices of primates. In: Collard M, Jeannerod M, Christen Y (eds.), Le cortex vestibulaire. Editions IRVINN. Ipsen, Paris, pp. 17–26

    Google Scholar 

  • Lobel E, Kleine JF, Le Bihan D, Leroy-Willig A, Berthoz A (1998) Functional MRI of galvanic vestibular stimulation. J Neurophysiol 80: 2699–2709

    CAS  PubMed  Google Scholar 

  • Masdeu JC, Gorelick PB (1988) Thalamic astasia: inability to stand after unilateral thalamic lesions. Ann Neurol 23: 596–603

    Article  CAS  PubMed  Google Scholar 

  • Mast FW, Merfeld DM, Kosslyn SM (2006) Visual mental imagery during caloric vestibular stimulation. Neuropsychologia 44(1): 101–9

    Article  PubMed  Google Scholar 

  • Ödkvist LM, Schwarz DWF, Fredrickson JM, Hassler R (1974) Projection of the vestibular nerve to the area 3a arm field in the squirrel monkey (Saimiri sciureus). Exp Brain Res 21: 97–105

    Article  PubMed  Google Scholar 

  • Schwarz DWF, Deecke L, Fredrickson JM (1973) Cortical projection of group I muscle afferents to areas 2, 3a and the vestibular field in the rhesus monkey. Exp Brain Res 17: 516–526

    Article  CAS  PubMed  Google Scholar 

  • Stephan T, Deutschländer A, Nolte A, Schneider E, Wiesmann M, Brandt T, Dieterich M (2005) FMRI of galvanic vestibular stimulation with alternating currents at different frequencies. Neurolmage 26: 721–732

    Article  Google Scholar 

  • Suzuki M, Kitano H, Ito R, Kitanishi T, Yazawa Y, Ogawa T, Shiino A, Kitajima K (2001) Cortical and subcortical vestibular response to caloric stimulation detected by functional magnetic resonance imaging. Cognitive Brain Research 12: 441–449

    Article  CAS  PubMed  Google Scholar 

  • Ventre-Dominey J, Nighoghossian N, Denise P (2003) Eviedence for interacting cortical control of vestibular function and spatial representation in man. Neuropsychologia 41: 1884–1898

    Article  CAS  PubMed  Google Scholar 

  • Wenzel R, Bartenstein P, Dieterich M, Danek A, Weindl A, Minoshima S, Ziegler S, Schwaiger M, Brandt T (1996) Deactivation of human visual cortex during involuntary ocular oscillations. A PET activation study. Brain 119: 101–110

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag/Wien

About this paper

Cite this paper

Dieterich, M. (2008). Veränderungen im Kortex nach peripher- und zentral-vestibulären Läsionen. In: Scherer, H. (eds) Der Gleichgewichtssinn. Springer, Vienna. https://doi.org/10.1007/978-3-211-75432-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-75432-0_14

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-75431-3

  • Online ISBN: 978-3-211-75432-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics